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The e lec t ronic  re laxat ion o f  a shock heated, nonequilibrium argon 

plasma flow i s  t r ea t ed  by means of a combined theo re t i ca l  and experi- 

men ta l  investiga%ion. 

includes the  microscopic co l l i s iona l  and rad ia t ive  processes. When 

coupled with the  macroscopic conservation l a w s ,  t h i s  leads t o  a rigorous 

formulation of t he  equations governing the  relaxing flow. 

numerical solut ion f o r  t h e  flow behind a s t rong incident  shock f ron t  

propagating i n t o  argon gas i s  compared t o  time-resolved interferograns.  

Good agreement i s  obtained between theory and experiment f o r  incident  

shock Mach numbers of 11 t o  18 propagating i n t o  argon a t  pressures of 

3 t o  5mm Hg. 

shock layer  preceding a cylinder-plate.  

formulated equations t o  predict  conditions along t h e  stagnation stream- 

l i ne ,  when the flow can e i t h e r  be considered one-dimensional or a t  con- 

s t a n t  density across  most o f  the shock layer .  Comparison of the  experi- 

mental and theo re t i ca l  results show t h a t  ne i ther  one of these postulated 

flows ac tua l ly  ex i s t s .  

A physical model of the  flow i s  postulated which 

A resu l tan t  

The experimental inves t iga t ion  i s  extended i n t o  t h e  argon 

An attempt i s  made t o  use the  
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CHAPTER 1 

INTRODUCTION 

1.1 INTRODUCTORY C O W  

I n  accordance with a growing i n t e r e s t  during the  past few 

years  i n  the  determination of  atomic reactions within high temperature 

flows, a number of invest igators  have conducted theo re t i ca l  and experi- 

mental s tudies  of t h e  behavior of a gaseous flow suddenly subjected t o  

a r ad ica l  pulse  change i n  temperature and pressure.  

t h e  gas par t ic les ,  unable t o  a d j u s t  instantaneously t o  t h e i r  new en- 

vironment, were momentarily thrown out of s t a t i s t i c a l  equilibrium. 

Subsequent equi l ibra t ion  among the  various species took place i n  a 

relaxat ion zone s t a r t i n g  j u s t  behind t h e  pulse or  shock f ront .  

They observed that 

A number of authors have studied this  behavior i n  shock heated 

argon. Petschek and Byron’ considered a flow where recombination of e lec-  

t rons  and ions and rad ia t ion  losses were neglected. F’urthermore, they 

used a s implif ied energy balance r e l a t i n g  changes of t h e  f r e e  electron 

energy by e l a s t i c  and ine l a s t i c  encounters. Bond 

model f o r  both ion iza t ion  and recombination, but neglected rad ia t ion  

losses  i n  h i s  t o t a l  enthalpy balance. Hamel l  and Jahn 

i n i t i a l  ionizat ion rates, due to  atom col l i s ions ,  d i r e c t l y  behind t h e  

shock f ron t  and concluded that ionizat ion involved a two s t e p  procedure, 

2 included a simple 

3 studied only t h e  

1 



4 
exci ta t ion pr ior  t o  ionizat ion.  Wong separated t h e  relaxing flow 

i n t o  three  regimes, t he  first located d i r e c t l y  behind t h e  shock f r o n t  

where co l l i s ions  between atoms produce an i n i t i a l  supply of electrons,  

followed by the second where electron-atom co l l i s ions  dominate t h e  

ionizat ion processes, and f i n a l l y  the  t h i r d  beginning where recombina- 

t i o n  processes become appreciable. He noted t h a t  intense rad ia t ion  

became v is ib le  near the  end of t he  relaxat ion zone and i n  t h e  down- 

stream quasi-equilibrium region, and t h a t  t h i s  radiat ion s t rongly 

affected t h e  flow variables .  His analysis,  however, d id  not include 

such radiat ive e f f ec t s  and could not be applied t o  the  strongly r ad ia t ing  

quasi-equilibrium region. 

The present study i s  designed 1. t o  gain a deeper under- 

standing of the individual co l l i s iona l  and rad ia t ive  processes within 

t h e  flow and using t h i s  knowledge formulate a unif ied s e t  of re la t ions  

applicable no t  only t o  t h e  relaxation zone but the  downstream strongly 

radiat ing quasi-equilibrium region as well, and 2. extend t h i s  inves t i -  

gation i n t o  the shock layer  preceding a cylinder-plate.  

1.2 POSTULATED MODEL OF TRE MICROSCOPIC FLOW PROCESSES 

In  order t o  understand t h e  co l l i s iona l  and rad ia t ive  

phenomena within an argon plasma flow it i s  necessary t o  postulate  a 

physical  model of t he  microscopic processes occurring within the  re- 

ac t ing  gas. A s  the  argon atoms pass through a strong shock f ron t  

t h e i r  thermal energy i s  grea t ly  increased, within a f e w  e l a s t i c  

co l l i s ions ,  t o  a value defined by the  Rankine-Hugoniot re la t ions .  

Subsequent i ne l a s t i c  co l l i s ions  between these atoms result i n  t h e i r  
2 
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I C  

electronic  exci ta t ion and ionization and the production of an i n i t i a l  

supply of f r e e  electrons at low thermal energies.  

mass difference between the atoms, or  ions, and the electrons, t he  

lat ter must r e ly  on ine l a s t i c  co l l i s ions  w i t h  excited atoms, i . e . ,  

superelast ic  co l l i s ions ,  as w e l l  as e l a s t i c  encounters With atoms i n  

order t o  gain subs tan t ia l  thermal energy. The resu l tan t  high energy 

free electrons may now in te rac t  i n e l a s t i c a l l y  with atoms, excit ing 

or ionizing them, and thereby increasing the supply of f r e e  electrons 

i n  the  gas. 

t o  give a degree of ionization bf the order of the r e l a t ive ly  

large electron-atom ine la s t i c  cross-section as well as the  high mo- 

b i l i t y  of t he  electrons enable electron-atom i n e l a s t i c  encounters t o  

serve as the  dominant ionization process. 

Due t o  the large 

Once a substant ia l  number of such electrons a re  available 

The argon atom i n  its ground energy s t a t e  has i t s  outermost 

subshell  of electrons, the  3p subshell, completely f i l l ed .  Upon excita- 

t i on  of the  atom one of these electrons,  denoted as the op t i ca l  electron, 

t r a n s i t s  i n t o  a higher energy o r b i t  about the nucleus ( see  Fige 1). 

Only one such opt ica l  electron is assumed t o  exist per atom. These 

higher energy leve ls  a r e  quickly populated w i t h i n  a region close t o  

the  shock f ront  mainly by ine l a s t i c  co l l i s ions  between atoms. Some 

of the op t i ca l  electrons acquire suf f ic ien t  energy t o  enable them t o  

leave the influence of the  atomic nucleus, resu l t ing  i n  ionizat ion 

of the  atom. 

region are  d i f f i cu l t ,  and as ye t  i n su f f i c i en t  information about them 

is  avai lable .  However, as mentioned previously, once a s igni f icant  

number of f r e e  electrons a re  present t h e i r  in te rac t ions  w i t h  atoms 

Quantitative analyses of the processes occurring i n  this 

3 
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FIGUHE 1. Excited Argon Atom 
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dominate the  exc i ta t ion  and ionization processes. Under such conditions 

t h e  heavy p a r t i c l e s  (atoms and ions)  and the  electrons separately suffer 

su f f i c i en t ly  numerous col l is ions t o  r e s u l t  i n  Maxwellian d is t r ibu t ions  

of t h e i r  thermal energies at, respectively, temperatures of TA and 

T . Furthermore, s ince t h e  f i r s t  enrcitation l e v e l  of argon exists at 

ii.5 ev above t i e  g r v u i i  state arid the uil&ist-u-bed ioiiizakion limit 

e x i s t s  at  15.755 ev, adequate ine l a s t i c  co l l i s ions  a r e  assumed t o  occur 

between the  f r e e  e lec t rons  and the excited atoms t o  maintain the number 

dens i t i e s  of a l l  excited levels  of t he  atom i n  a Maxwellian d i s t r ibu t ion  

a t  t he  electron temperature e 

e 

1 . 3  AUTOIONIZATION, IONIZATION POTENTIAL LOWBUNG, SERIES TRUNCATION 

OF TBE PARTITION FUNCTIONS, AND EFFECT OF IMPURITIES 

To complete t h i s  description of t h e  p a r t i c l e  in te rac t ions  

some consideration must be given t o  1) the  phenomenon of autoionization, 

2 )  the  lowering of  t h e  ionization po ten t i a l  by e l e c t r i c  microfields with- 

i n  the  gas, 

be considered, and 

production. 

3) the  number of atomic and ion ic  exc i ta t ion  leve ls  t o  

4) t h e  effect  of impurit ies on t h e  r a t e  of e lectron 

Autoionization ex i s t s  because there  are two s e r i e s  limits 

for t h e  ion iza t ion  energy, corresponding t o  the  two ground state con- 

f igura t ions  of t h e  ion w i t h  t o t a l  angular momentum quantum numbers 

J = -  Since these l imits  only d i f f e r  by 0.178 ev autoionization c 2 ' 2 '  

has been assumed t o  have l i t t l e  influence on the  r a t e  of e lectron pro- 

duction and, therefore,  i s  neglected i n  this study. 

- 5  



Lowering of t h e  ionizat ion l i m i t ,  which a f f e c t s  t he  production 

rate of f r ee  electrons, i s  caused by the  microfields within the plasma. 

A s ta t ionary  e l ec t r i c  f i e l d  w i l l  s p l i t  an atomic energy l e v e l  i n t o  

numerous discreet  components (Stark e f f e c t ) .  

by a number of perturbers i n  motion about t he  atom, the  r e su l t an t  micro- 

f i e l d  w i l l  change with t i m e  i n  both magnitude and d i rec t ion .  

causes the  upper leve ls  of the  perturbed atom t o  be smeared out rather 

than be s p l i t  i n t o  d i s t i n c t  components, thereby ef fec t ive ly  broadening 

these leve ls .  If such broadening i s  subs tan t ia l  enough t o  enable these 

leve ls  t o  overlap i n t o  the  continuum the  ionizat ion l imi t  i s  lowered. 

Though numerous theor ies  have been proposed t o  explain t h i s  phenomenon, 

If such a f i e l d  i s  caused 

This 

there  i s  a general lack of agreement between them, and it seems tha t  

only experimental evidence can resolve the  confusion. 

there  i s  some discussion on use of the shock tube as a possible t o o l  

f o r  such experimental measurements. In the  present study an Ecker- 

Weizel type of polar izat ion r e l a t ion  i s  used, which i s  i n  c lose agree- 

ment with the  concepts of many modern theo r i s t s .  The result, as given 

In Section 5.2 

by Pomerantz, ’ i s  
n 

T (10 ) 
AI = 0.38 [ ]’I2 

e 

where n i s  the number of e lectrons per em3 and AI  i s  the lowering 

of t h e  ionization l i m i t  i n  e lectron vo l t s .  

e 

The number of e lectronic  energy leve ls  assumed f o r  the atom 

and the  ion a f fec ts  the values of t h e i r  p a r t i t i o n  functions, conse- 

quently influencing the  population density of each of these leve ls .  

r 

b 



I n  t h i s  study t,he ion i s  considered t o  e x i s t  only i n  its two ground 

l eve l s  so t h a t  i t s  p a r t i t i o n  function, %(Te), i s  given by, 

&i(Te) = 4 -F 2 exp (- 7 j 
For yiie atorn yiie e-fierg$3s of %he first fey excite2 le-pls hioT*T 

and higher l eve l s  a r e  considered t o  obey a hydrogenic model. Since 

t h i s  would imply a diverging pa r t i t i on  function, it i s  necessary t o  

t runcate  the  se r i e s ,  t he  llcutoffll occurring where the  energy l e v e l  of 

t h e  last term of t h e  s e r i e s  corresponds t o  the  microfield lowered 

ion iza t ion  l i m i t .  In  the  event that these microfields a r e  too  weak t o  

provide s u f f i c i e n t  lowering of  the ion iza t ion  l imi t ,  as occurs a t  the 

low electron dens i t i e s  d i r ec t ly  behind an incident  shock f ront ,  the  

m a x i m u m  energy l e v e l  i s  taken t o  correspond t o  a hydrogenic o r b i t  

whose radius i s  ha l f  t he  d i s t ance  between adjacent atoms. 

That impurit ies shorten the  equi l ibra t ion  process i s  generally 

agreed, but  the degree t o  which they a f f e c t  t h e  electron pmduction 

r a t e  i s  as ye t  unknown. Harwell and Jahn,3 and Petschek and 

Byron, 

t h e  e lec t ronic  re laxa t ion  time behind an incident  shock. This subject 

i s  discussed i n  grea te r  detai l  i n  Section 5.1. 

4 
Wong, 

1 
among others  f e e l  t h a t  the e f f e c t  i s  appreciable i n  reducing 

1,4 FLOW PROBLEMS INVESTIGATED 

W i t h  the  foregoing description of t h e  atom and i t s  in te rac t ions ,  

c o l l i s i o n a l  as wel l  as radiat ive e f f e c t s  can be calculated.  The l a t t e r ,  

7 



due t o  free-free (bremsstrahlung) , free-bound and bound-bound e lec t ronic  

t r ans i t i ons  are found t o  play a s igni f icant  r o l e  i n  the  quasi-equilibrium 

region downstream of t h e  relaxation zone. Incorporation of these micro- 

scopic effects  with the  macroscopic conservation laws i n t o  a mathematical 

formulation enables def in i t ion  of the  flow of a nonequilibrium, rad ia t ing  

argon plasma behind a strong normal incident  shock f ront .  

Chapter 2 contains the  theo re t i ca l  description of t he  flow 

through a non-attenuating planar shock wave and cons t i tu tes  the  main 

ana ly t i ca l  portion of t h i s  study. 

preceding a cylinder-plate, wherein the  gas pa r t i c l e s  already heated 

and p a r t i a l l y  ionized by t h e i r  passage through the  incident  shock, 

experience an addi t iona l  change of conditions i n  t ravers ing the  shock 

layer preceding the  cylinder.  

Chapter 3 considers t he  shock layer  

1.5 EXPERIMENTALMEASUREMENTS 

The experimental results are obtained from both s t i l l  and 

t i m e  resolved interferograms of t he  ionized argon flow. 

has long been used i n  mapping gaseous densi t ies ,  and i s  dependent upon 

the  changes i n  t h e  index of re f rac t ion  of the  working gas. Since t h i s  

index i s  re la t ive ly  insens i t ive  t o  the  impressed op t i ca l  wavelength 

f o r  t he  heavy p a r t i c l e s  while being highly dispersive f o r  electrons,  

Alpher and White 

o p t i c a l  interferometry could be used t o  measure independently t h e  

heavy pa r t i c l e  and  e lectron dens i t ies  a t  any point  within an ionized 

gas.  

This technique 

6 were ab le  t o  show i n  1959 t h a t  dual wavelength 

These measurements a re  not dependent on t h e  state of t he  gas 

8 



and therefore o f f e r  a technique of obtaining p a r t i c l e  and electron 

dens i t i e s  i r r e spec t ive  of the  degree of local thermal equilibrium. 

The experimental equipment and i ts  operation are explained i n  Chapter 4, 

and t h e  empirical  r e s u l t s  discussed and compared t o  the  theo re t i ca l  

calculat ions i n  Chapter 5 .  

?lie present study is pad of a long range invest igat ion,  

being conducted a t  Stanford University, t o  gain a broader and deeper 

understanding of t he  dynamics of high temperature plasma flows, and 

the k ine t i c s  of t h e i r  microscopic c o l l i s i o n a l  and rad ia t ive  processes. 

9 



CHAPTER 2 

MATHENATICAL RELATIONS GOVERNING THE FLOW BEHIND 

A STRONG NORMAL SHOCK FRONT 

2.1 GENERAL AND TIME-IIDEPEh'DENT, ONE-DIMENSIONAL FORMULATIONS 

The following i s  a Lagrangian formulation of the  equations 

governing a non-equilibrium, rad ia t ing  argon plasma flow 

Conservation of Mass: 

Conservation of Momentum: 

Conservation of Energy : 

Thermal Equation of S t a t e  : 

Rate of Electron Production: 

Electron Thermal Energy Gain: 

p = n kT + (ni + nA) kTA e e  

- D (7) ne = FnA ( c o l l i s i o n a l  
D t  processes ) 

( c o l l i s i o n a l  energy t r ans fe r  
between species)  

where qR, the rate of radiant  energy loss per u n i t  volume, and t h e  

10 



functions Fn and F 5  are  as yet  undefined. A 

It must be noted tha t  i n  t h i s  formulation volume forces ,  

viscosi ty ,  and r e l a t ive  diffusion between species have been neglected. 

In  invest igat ing the relaxat ion phenomenon behind a non- 

attenuating, s t rong normal shock f r o n t ,  and neglecting multi- ionization 

of at.om, the above formidatinn m n  be reduced tc? the fn l lming set. CS 

time-independent, one-dimensional r e l a t ions  w i t h  respect  t o  a coordinate 

system t r ave l l i ng  a t  the  veloci ty  of the shock f ron t .  

Conservation of Mass: p u = p u  

Conservation of Momentum: 

r r  

p + PU* = Pr + PrUr 2 

d 1 2  qR Conservation of h e  rgy : u (hg + 5 u ) = - - 
P 

Thermal Equation of State:  P = P R ( T ~  + me) 
d %  Rate of Electron Production: u - (-) = Fn ( c o l l i s i o n a l  
dx P A processes) 

E 

Electron Thermal Energy Gain: 
2 n kT 

u”(’ dx ‘p e ) = F %  

(co l l i s iona l  energy t r ans fe r  
between spec ies )  

where the subscript  r refers  t o  reference conditions. 

The algebraic  re la t ions  fo r  conservation of mass and momentum 

a re  derivable from macroscopic considerations, where the  momentum los s  

due t o  rad ia t ion  has been neglected. The thermal equation of s t a t e  

11 



results from the  k ine t ics  of a two temperature p a r t i a l l y  ionized gas.  

The three  remaining equations are seen t o  be d i f f e r e n t i a l  and require  

fo r  t h e i r  full def in i t ion  t h e  invest igat ion of t h e  co l l i s iona l  and 

rad ia t ive  processes within the  gas. 

formulated by using the  atomic model described i n  Section 1.2 

resu l tan t  re la t ions are applicable throughout t h e  flow behind a normal 

shock f ront ,  except f o r  t he  region close t o  t h e  shock f ron t  dominated 

by atom-atom co l l i s ions  where the  excited l eve l s  of the  atom have not 

ye t  a t ta ined  a Boltzmann d i s t r ibu t ion  a t  the  temperature of t h e  free 

electrons.  However, appl icat ion of these r e l a t ions  within t h i s  

questionable region w i l l  probably produce in su f f i c i en t  deviations from 

the  a c t u a l  flow conditions t o  be observable experimentally. 

These w i l l  now be spec i f i ca l ly  

The 

2.2 CONSERVATION OF ENERGY 

The enthalpy per un i t  mass of p a r t i a l l y  ionized argon gas is, 

where the  electronic  energy of the  excited s t a t e s  i s  denoted by W, 

and the  radiation enthalpy of t h e  gas has been neglected. 

When the  number dens i t ies  of t he  excited leve ls  of the atom 

are i n  thermal equilibrium a t  t h e  temperature of t h e  f r e e  electrons,  

W can be expressed as, 

dQ( T,  I kh3 p(a T )2 
W =  exp (-1 

2( 2 m  kT ) 3'2~zQi ( Te ) dTe kTe 
e e  



The r a t e  of r a d i a t i v e  energy loss, q , due t o  bremsstrahlung, R 

free-bound, and bound-bound transit ions requires a detailed knowledge 

of the in te rna l  structure of the argon atom, the osci l la tor  strengths 

of the allowable electronic 

each of these transit ions.  

EGrz,7 znfi his rcs.dts wer2 

formulation. 

transitions, and the optical  depth f o r  

Such an investigation w a s  conducted by 

qpxes  t= t h e  present  = ~ = - e q ~ ~ 5 r ~ ~  

The radiative loss due t o  bremsstrahlung and free-bound 

7 transit ions collectively is given by H o r n  as, 

where, 
A 64e 6 x 3/2 

D =  
3 4  m3I2 e k1'2 c3 

and the cutoff frequency, v , was taken as 2.85 ev corresponding t o  

transit ions t o  the second excited, or  4p, l eve l  of the  atom. Transitions 

C 

t o  the  first excited level  are suggested by the resul ts  of Iagar'kov 
8 

'eff' and Yakubov t o  be quite small. The effective nuclear charge, 

was se t  a t iL5 i n  accordance with the  theoret ical  work of Bibeman 

and Norman 9 and the experimental work of Horn. 7 

The radiative loss due t o  bound-bound t ransi t ions i s  shown 

t o  be of the same order of magnitude as the loss due t o  transit ions 

from the continuum, and i s  given by, 



where values for M 
9, P 

Summation of 

have been calculated by Horn. 7 

these two p a r t i a l  rad ia t ive  losses  r e s u l t s  i n  

an approximation for the  t o t a l  rad ia t ive  emission and enables t h e  

d i f f e r e n t i a l  re la t ion  f o r  the  conservation of energy t o  be expressed 

i n  terms of t h e  flow variables., 

2 .3  RATE OF ELECTRON PRODUCTION 

I n i t i a l l y  e lectrons a r e  produced by atom-atom i n e l a s t i c  

encounters.When a subs tan t ia l  quantity of f r e e  e lectrons i s  avai lable  

electron-atom i n e l a s t i c  encounters predominate. These w i l l  be t r ea t ed  

i n  reverse order. 

2.3.1 ELECTRON-ATOM INELASTIC ENCOUNTERS 

2.3.1.1 GENERAL FORMULATION 

The r a t e  of e lectron production due t o  electron-atom encounters 

can be determined when su f f i c i en t  f r e e  e lectrons a r e  present so t h a t  

t h e  excited levels of the  atom are thermally equi l ibrated at t h e  

electron temperature. 

out l ined by Bates, Kingston, and McWhirter. Their theory, though 

developed f o r  hydrogen atoms o r  hydrogenic ions w a s  adapted t o  argon 

atoms having one op t i ca l  e lectron.  

The method used i s  based on t h a t  o r ig ina l ly  

10 
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Consider the following reactions in the gas, 

Ionization and Three Body Recombination: 

A ( D )  + e-A + e  + e  1 . * .  

Collisional Excitation and &-excitation: I 

Photoionization and Radiative Recombination: I 

, .  - +  

Spontaneous Transitions: 

A ( p )  A% A( q) + hv 

Stimulated Emission and Absorption: 

l -  

where the rate coefficients for the forward and backward reaction pro- 

cesses are defined symbolically for transitions Setween two bound states, 

p and q, or one bound state and the continuum, p and z. and 

represent the Einstein coefficients for spontaneous and stimulated 

I -  transitions. 

I 1 5  

L 



These r e l a t ions  enable the rate of change i n  t he  number 

t h  density of a toms  having Optical  e lectrons i n  t h e  p 

pressed as 

l eve l  t o  be ex- 

If it i s  assumed tha t  there  are suf f ic ien t  i n e l a s t i c  co l l j s ions  

t o  maintain t h e  number dens i t ies  of a l l  t,he excited leve ls  of the atom 

i n  thermal equilibrium with the f r e e  electrons,  no additional op t i ca l  

e lectrons a r e  able  t o  t r a n s i t ,  i n to  any excited o r b i t s  without upset t ing 

the  s t a t i s t i c a l  balance of the gas. Therefore, f o r  a given electron 

temperature, any jump of a ground s t a t e  e lectron in to  an excited l eve l  

must be accompanied by the  transitLon of an excited elpctron i n t o  the  

continuum, and the  mechanism f o r  t he  recombination of a f r e e  electron 

must be analogous. However, since the  electron temperature i s  not a 

s t a t i c  function, the  number dens i t ies  of t he  excited leve ls  a r e  not fixed 

quant i t ies  and  subject t o  change, though the  rate of such changes i s  

s m a l l  when compared t o  t h a t  of t he  ground leve l .  This can be expressed 

mathematAcally as, 

- dn(p) << dn(0) 
J 

d t  dt. 
Pf 0 

where p = 0 represents the ground l e v e l  of t he  atom, and implies tha t ,  

lt5 



1 -  

Furthermore, if the assumption is  made that almost a l l  of 

the ionization o c c u ~ s  from excited levels, and very l i t t l e  d i rec t ly  

from the ground state,  and that recombination follows a similar multi- 

s tep  procedure, the rate coefficients K ( O , z ) ,  f3(O,z), K ( z , O )  and f3(z,O), 

defining a one-step process between the ground s ta te  and the continuum, 

can be neglected. 

I n  addition, the number density of an excited level,  q, can 

be related t o  the electron density by a development similar t o  that 

employed i n  the derivation of the Saha equation. The resul tant  expression 

is , 

t h  where g(q)  is the s t a t i s t i c a l  weight of the q electronic energy 

leve l  of' the atom. This modified Saha relat ion was arrived a t  

independent of whether the number densit ies of the ground s t a t e  and the 

excited levels  are i n  thermal equilibrium. 

Summing the previous equation over all values of q, the 

t o t a l  nwiber density of atoms i n  all excited levels,  becomes 



and enables the  

expressed a s ,  

These 

number densi ty  of atoms i n  the ground s t a t e  t o  be 

r e l a t ions  and the foregoing approximations transform 

the equation defining the r a t e  of change of the number dens i ty  of atoms 

i n  the ground s t a t e  i n to  the following form, 

where the Einstein coef f ic ien ts  i (q ,O) ,  8(q,O),  and f % ( O , q )  and 

the exc i ta t ion  and de-excitation r a t e  coef f ic ien ts  K(0,q) and K(q,O), 

a s  well  a s  the rad ia t ion  dens i t ies  

pR( vq, o), a re  a s  yet undetermined. 

) or  t h e i r  equivalent PI?( VO, q 

2.3.1.2 EVALUATION OF THE RADIATION DENSITIES AND THE EINSTEIN 

COEFFICIENTS 

Consider f i r s t  the terms containing the Einstein coef f ic ien ts  

g(0,q)  and J?(q,O). Since these represent stimulated t r ans i t i ons  

18 



which are dependent on the radiation densit ies it is  necessary t o  

obtain 833 expression f o r  these l a t t e r  quantities. 

t ion i s  derived i n  Appendix A f o r  a body a t  temperature 

equilibrium w i t h  its surr~~ndings. 

The following rela- 

T i n  the- 

Using the Planckian distribution 

2v 3h B ( T )  = -  
C 

V 

the radiation density f o r  a frequency Y i s  expressed as, 

where the opt ical  depth T = k x and x represents a characterist ic 

length of the f l o w .  

where T +m,  i s  this condition of thermal equilibration exact and 

the above formula applies. For large '5 it i s  a good approximation. 

Y V 

It must be noted tha t  only f o r  black body radiation, 

V 

Y 

The determination of the volume absorption coefficient, k I 
V 

requires an involved analysis, the de ta i l s  of which are shown in 

Appendix B f o r  the singlet  and t r i p l e t  resonance t ransi t ions from 

the first excited, or 4s, level, a t  the resonance frequency, \I 

The results show t ha t  f o r  a characterist ic length, x = 5cm, correspond- 

ing t o  the width of the shock tube used i n  the experiments, the opt ical  

depths f o r  the  s inglet  and t r i p l e t  t ransi t ions are respectively, 

0,l' 



Therefore, the gas can be considered op t i ca l ly  th ick  f o r  these resonance 

t r ans i t i ons  enabling t h e  rad ia t ion  dens i t ies  t o  be approximated by the  

Planckian f om, 

3 8nv0 lh hvo, 1 ( kTe ) - ’1’ N 

P R ( V 0 , l )  - C 3’ 

I n  addition t o  t h e  rad ia t ion  densi t ies ,  t he  Einstein A and 

coeff ic ients  must be determined. In Appendix C these l a t t e r  quant i t ies  

are r e l a t ed  t o  another atomic constant, t he  o s c i l l a t o r  strength,  f 

where p and q represent any two bound energy l eve l s .  The r e s u l t s  
P, q’ 

are ,  

It i s  now possible  t o  estimate values f o r  the  terms i n  the  

r a t e  equation which include the  Einstein coef f ic ien ts .  

t he  summation, 

Consider f i rs t  

20 



The first terms of t h i s  summation represent the s ing le t  and t r i p l e t  

t r ans i t i ons  from the 3p 4s, or f i r s t  excited l eve l  ( q  = l), t o  t he  

ground s t a t e .  Since the osc i l la tor  strengths f o r  these t rans i t ions  

have been calculated by Knox% from the  quantum mechanical Hartree- 

Fock relat ions,  values of the Einstein ~ ( 1 , O )  coeff ic ients  can be 

5 

calc-ds-fed to be, 

'X(1,O) = 4.0(10 -8 ) sec -1 3i( 1 , O )  = 0.98( lo-') sec -1 and 

I n  the second excited l eve l  (q = 2), the  opt ica l  electron 

t r ave l s  i n  the  4p o rb i t  and the atom can ex i s t  i n  ten  j states. 

only four of these allow t rans i t ions  t o  the  ground leve l  and, by the  

t r ans i t i on  rules, they mu& have values of j = 1 with degeneracies of 

3 .  Therefore, t he  function g(q) em(-E dkT,) decreases w i t h  in- 

creasing excited leve ls  

values f o r  neut ra l  argon (argon I) t r ans i t i ons  between the second and 

f i r s t  excited leve ls  than between the  t h i r d  and first excited levels .  

Logically this seems plausible, i n  t h a t  a one l e v e l  quantum jump seems 

more probable than one spanning two levels .  

t h i s  hypothesis f o r  resonance t ransif ions,  it follows tha t ,  

However, 

% 

Furthermore, Olsen13 measured la rger  

Assuming the  va l id i ty  of 

Therefore, due t o  the rapid decrease of the exponential 

function, resonance t ransi t ions,  other than those from the first excited 

level ,  a r e  neglected. This leads t o  the  approximation, 

21 



- 
Consider next the summations involving the Einstein B 

coefficients, 

With the radiation density for each of these resonance transitions 

expressible in the Planckian form, it can be shown that for the con- 

ditions of this experimental investigation, where the maximum T is 

approximately 1 ev, 
e 

so that, 

Furthermore, since A(  q , O )  < A( l,O), for q > 1, the Einstein 

relations show that, 

1) &LO) < B ( 1 , O )  

2 )  m,d < 5(0,1) 
for g > 1 

where for allowable transitions the q levels must have degeneracies 3. 
22 



Consequently, by using an argument similar to that for ob- 

taining an expression for the summation involving Einstein coeffi- 

cients, the terms involving the Einstein % coefficients can be 

approximated by the resonance transitions from the first excited level. 

Since the oscillator strengths for these transitions are known, t he  5 

1- B(1,O) = 277 cm @ -1 and 3ji(l,0) = 71-35 cm gm-l 

-1 -1 3%(0,1) = 214.05 cm gm 1- B ( o , ~ )  = 831 cm g m  and 

and result in the approximations, 

+ 214.05 pR[v = 2.81(d5) sec-'] 

15 -1 (- 1.859(10-11)) 
e kT + 214.05 pR[v = 2.81(10 ) sec 1 exp 

2.3 .l. 3 TEE EXCITATION AND DE-EXCITATION RATE COEFFICIENTS 

Finally, suitable expressions for the summations of the 

excitation and de-excitation rate constants, 2 K(O, q) and 

9 >o 

q>o 1 K ( q , O )  must be obtained. 

23 



Figure 2 i s  a p l o t  of experimentally determined ionization 

cross-sections for  electron-atom col l i s ions  obtained from Petschek and 

I 
Byron 

ionization mechanism i s  considered t o  be a multi-step process whereby 

an e l e c t r o n  is f i r s t  rsiced t o  nr? excited l e v e l  p r i o r  t o  being ionized, 

each of these measured ionization cross-sections i n  r e a l i t y  represents 

t he  sumnation of a l l  t h e  cross-sections f o r  exci ta t ion from the  ground 

leve l .  

r e su l t s ,  adjusted t o  give the correct  threshold, produces, 

and based on the  experimental data  of Maier-Leibnitz. Since the 

A second degree polynomial weighted f i t  t o  t h e  experimental 

u (E) = 8.183(10 -I9) c2 - 1,536( ~o-’~)E + 6.840( lo 47) e-A 

2 
where the i n e l a s t i c  cross-section, u 

E ,  of t he  coll iding electron i s  i n  e lectron v o l t s .  

Since the  thermal veloci ty  of t he  electrons great ly  exceeds 

( E ) ,  i s  i n  cm and the  energy, e-A 

t h a t  of t h e  atoms i n  t he  region where electron-atom encounters dominate 

the  co l l i s iona l  processes, the atoms a r e  assumed t o  be s ta t ionary with 

respect t o  the col l iding electrons + 

exci ta t ion rate coeff ic ients  can be 

Consequently, t he  summation of t he  

represented by, 
m 

1 f ( E )  
E i 

where E i s  the thermal energy of t h e  electron and where the lower 

l i m i t  of integration begins a t  t he  energy, 

f i rs t  excited l e v e l  of t he  atom. 

E corresponding t o  the  i’ 

For thermally equi l ibrated free electrons t h e  d is t r ibu t ion  

function, f (E) ,  has a Maxwellian form and t h e  integrat ion yields  
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F E W  2. Electron-Atom Inelastic Cross-Section for Ground State Excitation I 
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The de-excitation cross-section can be r e l a t ed  t o  the  exci ta-  

t i on  cross-section as shown by Seaton,14 o r  by t h e  method of de ta i led  

balancing outlined i n  Appendix D, and r e s u l t s  i n  the  following r e l a t ion  

between t h e  excitation and de-excitation r a t e  coef f ic ien ts ,  

The right hand s ide of t h i s  expression represents t he  de-excitation 

term required i n  the  rate equation, 

2 .3.2 ATOM-ATOM INELASTIC ENCOUNTERS 

Recognition must be given t o  t h e  r o l e  of atom-atom i n e l a s t i c  

encounters which produce the  i n i t i a l  supply of f r e e  e lectrons behind 

the  incident  shock f ront .  Theoretical  and experimental information on 

the  cross-sections fo r  such encounters i n  argon a r e  scarce,  Sluyters  

e t  a l . l5  conducted beam experiments i n  t h e  high energy range of 5 t o  

24 kev, while Harwell and Jahn 

sections f o r  r e l a t ive ly  low energies, approximating 1 ev, by micro- 

wave s tudies  i n  shock tubes.  Harwell and Jahn found t h a t  f o r  shock 

3 attempted t o  measure such cross- 
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heated argon a t  an  i n i t i a l  pressure of 5 mm Hg, the  ionizat ion mech- 

anism proceeds i n  a t  least t w o  s teps ,  exc i ta t ion  followed subsequently 

by ionizat ion.  These results were based on a cross-section of t he  

form, 

u (E) = c (E - Ei>  A-A 1 

where c i s  a constant, E: i s  the  r e l a t i v e  energy of a pair of co l l id -  

i ng  atoms r e l a t i v e  t o  axes moving with t h e i r  center  of mass, and 

i s  the  energy of t h e  f i r s t  excited l e v e l  of the  atom. 

a t  energies below 1 ev the  electron production rate due t o  atom-atam 

encounters can be approximated by am Arrhenius dependence on the  atom 

temperature and the  energy of t h e  first exc i ta t ion  level ,  which implies 

t h a t  e lec t ronic  exc i ta t ion  t o  this l e v e l  i s  the r a t e  cont ro l l ing  re- 

ac t ion .  

1 

E 

Furthermore, 

i 

In the  present study, where atom temperatures ranged up t o  

3 ev, such an Arrhenius dependence was included and a constant preceding 

the  exponential w a s  a r b i t r a r i l y  varied u n t i l  t he  e lec t ronic  re laxat ion 

length agreed with the experimental r e s u l t s .  Such var ia t ions  only 

changed the length of the  relaxation zone and not the  shape of i t s  

f r inge  p ro f i l e .  An example of t h i s  i s  shown i n  Fig. 12. Though, t he  

nmber of experimental cases was limited,  there  w a s  indicat ion t h a t  t h e  

constant myltiplying t h e  exponential would i n  r e a l i t y  have t o  be t e m -  

perature dependent, thereby excluding a simple Arrhenius expression. 

With t'nis i n  mind t h e  aton-atom c o l l i s i o n a l  cross-section 

w a s  invest igated t o  determine what type of p r o f i l e  might be expected. 



According t o  Massey and Burhop,16 i f  t he  t i m e  during which an encounter 

takes place i s  much longer than the time required for an electron o rb i t ,  

the  electron can ad jus t  t o  t he  perturbing conditions, thereby minimizing 

the  probabili ty of  su f f i c i en t  energy exchange f o r  a quantum t r ans i t i on .  

Mathematically expressed, t h i s  "adiabatic I' condition e x i s t s  when, 

- >> 1 
hv 

where r i s  the range of in te rac t ion  between atoms, and v i s  t h e i r  

r e l a t ive  velocity 

For argon t h e  f irst  t r ans i t i on  corresponds t o  a quantum 

energy jump, m, of 11.5 ev. Therefore, with a lower l i m i t  on r of 

the  order of 10 
-8 

cm, a solution can be obtained f o r  t h e  r e l a t i v e  

and the  corresponding energy, E a t  which t h e  above 
vOJ 0' 

velocity,  

re la t ion  i s  o f  the  order of 1, i . e . ,  when the  probabi l i ty  of a t r ans i -  

t i o n  t o  t h e  f i r s t  excited l e v e l  becomes s ign i f i can t .  This r e su l t s  i n  

an E of  the order of  1 kev so t h a t  t he  i n i t i a l  portion of t he  

cross-section curve may be expected t o  resemble, 

0 

'i 

11.5 eV 

0 
E 

0(1d ev> 
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In  a gas of atom temperatures below 3 ev, where there  

a r e  extremely few atoms i n  the  Maxwellian d i s t r ibu t ion  with energies 

above 1 kev, most of t he  exci ta t ion and subsequent ion iza t ion  must re- 

sult from the  high frequency of encounters by low energy atoms, even 

though the  probabi l i ty  of a t r ans i t i on  t o  t h e  f irst  excited level per 

such encounter i s  small. A s  most of the  atoms a r e  i n  an energy range 

near the  ion iza t ion  threshold, the  i n i t i a l  port ion of t he  cross-section 

curve, near the  exc i ta t ion  energy, i s  of grea tes t  i n t e r e s t .  

Assme t h a t  the  i n i t i a l  portion of t he  curve can be approximated 

by a polynomial of degree n, 

n 

m=l 
cl ( E )  = C A E  - Ei) m 
A-A 

1 2  where the  exc i ta t ion  energy E: = - m v and the c ‘ s  are constants.  

Using the  r e l a t ion  given by Chapmann and Cowling’’ f o r  t he  co l l i s ion  

frequency together with the  above expression f o r  the i n e l a s t i c  cross- 

section, the  following representation f o r  the  electron production r a t e  

due t o  atom-atom i n e l a s t i c  encounters i s  developed i n  Appendix E, 

i 4 A i ’  m 

The constants c and the  number of terms, n, required m u s t  be 

determined by equating these theo re t i ca l  production r a t e s  t o  those 

experimentally derived, by mating relaxat ion lengths, as described 

previously. U?fortunately, the l imited number of experimental r e s u l t s  

m’ 



i n  t h i s  study did not enable accurate evaluation of t he  cross-section. 

A two term solution was attempted f o r  four t e s t  cases.  The values of 

-8 3 c and c were of t he  order of 10 and 10 respect ively.  A more 1 2 

precise quant i ta t ive analysis involving more terms i s  l e f t  f o r  fu ture  

invest igat ion.  

With an a r b i t r a r i l y  chosen value f o r  t h e  electron production 

r a t e  due t o  atom-atom i n e l a s t i c  encounters and the  r e l a t ions  derived 

i n  section 2.3.1 t he  function 

ordinary, non-linear d i f f e r e n t i a l  equation f o r  t h e  t o t a l  rate of e lectron 

FnA i s  defined and results i n  a 

production. 

2.4 RATE O F  THERMAL ENERGY GAIN BY THE FREE E L E T R O N S  

The r a t e  of thermal energy gain by the  electron sub-flow con- 

s t i t u t e s  a s ix th  independent r e l a t ion  defining the  flow processes. 

i s  obtained by considering the f r e e  electrons as being subjected t o  

randomly directed e l a s t i c  and i n e l a s t i c  encounters with t h e  atoms and 

ions.  Since diffusion of the  various species has been neglected, such 

encounters only change the  enthalpy of the electron sub-flow. If t h i s  

enthalpy i s  expressed as, 

It 

the  resul tant  r a t e  of energy t r ans fe r  t o  t h e  f r e e  electrons becomes, 

n T  

D t  



where Cp defines t h e  rate of increase, per u n i t  volume, of the  electron 

thermal energy due t o  e l a s t i c  and i n e l a s t i c  encounters with heavy 

p a r t i c l e s .  

formiiation i n  Section 2.1 reveals Vnat 9 5 ( p ) ( ~ n g ) .  

Comparison of t h i s  re la t ion  w i t h  t h e  o r ig ina l  Lagrangian 

Neglecting multi-ionization of atoms and considering only t h e  

time-independent, one-dinensional case, the  above r e l a t ion  i s  expressed 

where conservation of mass allows replacement of pu by prur. 

2.4.1 DETERMINATION OF THE RATE OF ENERGY GAIN, Cp 

The rate of thermal energy gain, 0, by the  electron sub-flow 

i s  dependent on the  following processes each of which i s  examined i n  

d e t a i l .  

2.4.1.1 ELASTIC TRANSFElR BY 33lXCTRON-ION ENCOUNTERS 
18 Landau invest igated t h e  e l a s t i c  energy t r a n s f e r  between 

an electron and an ion  during an encounter by considering only s m a l l  

def lect ions of the t r a j e c t o r y  of t h e  electron, with a resultant 

s ign i f i can t  momentum change only i n  t h e  d i rec t ion  perpendicular t o  the  

i n i t i a l  t r a j ec to ry .  

pression f o r  the rate of energy increase of a Maxwellian d i s t r ibu t ion  

of electrons,  due t o  t h e i r  encounters w i t h  ions, a lso i n  a Maxwellian 

d i s t r ibu t ion .  H I S  r e su l t an t  r e l a t ion invo lves the  Debye length which, 

By working i n  momentum space he obtained an ex- 



f o r  t he  conditions of t h i s  experiment, def ines  a Debye sphere containing 

approximately 4 electrons,  and consequently too f e w  t o  provide adequate 

shielding.'' However, considering a sphere with radius  twice the  Debye 

length resolves t h i s  problem and the  r e su l t an t  expression becomes, 

i s  defined i n  l i n e  with most published 
dD' where t h e  Debye length, 

works, as 

2 n e  n e 

It m u s t  be noted t h a t  Cambel,20 using the Debye-Hkkel theory, wherein 

he includes t h e  ion  d is t r ibu t ion ,  derives a Debye length f o r  a singly 

ionized gas which i s  smaller by a f ac to r  of @ than the  above r e s u l t .  

However, the higher mobili ty of t he  electrons enables them t o  dominate 

the  shielding, thereby suggesting use of t he  standard def in i t ion  i n  

t h i s  study. 

The c loses t  approach, f o r  e l a s t i c  impact, between an electron 

and an ion  is  

centr i fugal  forces  between an electron-ion pa i r .  

following relat ion f o r  a pair of co l l id ing  p a r t i c l e s  with average 

bo and can be obtained by equating t h e  Coulombic and 

This results i n  the  

k ine t ic  energy, 

2 

0 4kT 
e b = -  

e 

and transforms the preceding modified Landau expression into,  
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2.4.1.2 FLASTIC ElywGy TRAmsFER BY l3L3XTROIB-ATOM EmCOuNTeRs 

The rate of energy transferred t o  the  electrons by the atoms 

during e l a s t i c  encounters i s  given 

(pg = 4kn ( T  e A Te) 

21 by de Voto as, 

A quadratic polynomial w a s  f i t  t o  h i s  p l o t  of the  average cross-section, 

0' 

above expression into,  

( T  ), f o r  such e l a s t i c  encounters and resu l ted  i n  transforming the  
e-A e 

1-Cr 2 8m 1/2 
'92 = 4( 3 ( ( 2  - 1) (kTe)3'2 (5) 

"A 

x [-5.88(10-~) 8 + 4.64(10-~) T - 0.3371 
e e 

2.4.1.3 ENERGY LC6S DUE TO BFEZESTRAHLUNG 

During t h e i r  encounters with ions and atoms t h e  accelerat ion 

Only of t he  electrons causes them t o  r ad ia t e  energy (bremsstrahlung). 

such radiat ion due t o  electron-ion encounters has been considered, 

and the resu l tan t  rate of energy lo s s  i s  given by Rose and Clark, 
22 

asy 
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2.4.1.4 INELASTIC ENERGY TRANSFER BY ELECTRON-ATOM ENCOUNTERS 

Thermal energy may be t ransferred t o  the  f r e e  electrons by 

a var ie ty  of i n e l a s t i c  encounters with atoms. 

a r e  considered. 

The following react ions 

2.4.1.4.1 MULTI-STEP IONIZATION OF THE ATOM FROM ITS GROUND STATE 

I n  t h i s  process the  atom i s  first raised t o  an excited l e v e l  

due t o  e i ther  co l l i s ions  with electrons or absorption of radiant  energy, 

and thenassumed t o  ionize through subsequent co l l i s ions  with electrons.  

F o r  such interact ions,  t he  following approximation f o r  the  resu l tan t  

rate of energy loss from the  electron sub-flow can be obtained, 

1 15 -1 
I,1 

+ 214.05pR[v = 2.81(10 ) see 3 E 

i s  t h e  energy difference between the  ionizat ion poten t ia l  
1 7 1  

where E 

and the  f i r s t  excited l e v e l  of t he  atom. 

2.4.1.4.2 TWO-BODY RADIATIVE RECOMBINATION 

I f  an electron and an ion are t o  recombine without t he  

presence of a t h i r d  body, t he  electron must be within the minimum 

e la s  t i c  impact d i  stance, of t he  ion. Since b a l /Te  and the  
0 

34 



electron temperature i n  t h i s  study is  a t  maximum s l i g h t l y  above 1 

elec t ron  vol t ,  t h e  average spacing between e lec t rons  and ions i s  of 

t he  order of lOOb 

d i s t r ibu t ion  w i t h  energies of the order of 0.01 ev or below can 

experience two-body recombination. 

=f electrcxs i n  rr ,!&,xxelli~~~ d i s t r l l y - ~ t i ~ ~ ~  rith ezergies beley a giT.re2 

value , 

Therefore, only those electrons i n  the  Maxwellian 
0' 

The expression for t he  f r ac t ion  

can e a s i l y  be derived and yields ,  ER' 

2 2 
- A  e=(-A ) 

&l 
2 = e r f  A - 

n 
J;; e 

n 112 where A = ( E  /kT ) . R e  

For 5 = 0.01 ev, 

An 
- N  e 0.04% 

n -  e 

Since th i s  percentage i s  small the  thermal energy lo s s  due t o  r ad ia t ive  

recombination w a s  neglected. 

2.4.1.4.3 THREZ-BODY COLLISIONAL RECOMBIMATION 

The assumption i s  made that  i n  almost a l l  co l l i s ions  between 

two free e lec t rons  and an ion the recombining e lec t ron  is  bounded i n t o  

one of the  numerous energy levels  near t he  ionizat ion l i m i t  of the  

atom and the  thermal energy it loses  i s  gained by the  other  e lectron 

involved i n  t h e  c o l l i s i o n .  

there  i s  e s sen t i a l ly  no change i n  t h e  t o t a l  thermal energy of the  

electron sub- f low. 

Consequently, f o r  t h i s  type of in te rac t ion  
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2 .4.1.4.4 COLLISIONAL DE- EXC ITATION 

I n  c o l l i s i o n a l  de-excitation t h e  electronic  energy l o s t  by 

an atom during i t s  t rans i t ion  from an upper energy level,  q, t o  a lower 

leve l ,  p, i s  gained by the  co l l id ing  f r e e  electron.  

dens i t ies  of t he  excited l eve l s  a r e  assumed t o  be i n  thermal equilibrium, 

only t r ans i t i ons  t o  t h e  ground leve l ,  designated by 

considered. This enables the r a t e  of energy gain by the electron sub- 

flow f o r  co l l i s iona l  de-excitation t o  be expressed as, 

Since the  number 

p = 0, need be 

From t h e  r e su l t s  of Appendix D, 

- 
where t h e  f i n a l  equal i ty  can be introduced i f  E i s  defined as 

q, 0 
a weighted average energy. Assuming t h a t  K( 0,l) >> K( 0,2) >> * * * >> 

t he  energy of t he  f i rs t  
E 1 , O J  

can be approximated by 

excited leve l .  

gas by t h i s  process t o  be approximated by, 

This enables the r a t e  of energy gain of t he  electron 

2.4.1.5 INELASTIC EJXEFGY TRANSFER BY ATOM-ATOM ENCOUNTERS 

The production of t he  i n i t i a l  f r e e  electrons behind the 



I .  

incident shock f ront  resu l t s  from ine las t ic  encounters between atoms. 

Empirical infomation on the  thermal energy gained by these ionized 

electrons i n  such coll isions seems pract ical ly  non-existent, though 

it would seem probable that most of the  co l l i s iona l  energy exchange 

i s  used for ionization and the  resul tant  free electrons are re la t ive ly  

cold. 

indicate t h a t  f o r  strong cylindrical  shock waves the i n i t i a l  electron 

thermal energy may be approximately equal t o  i t s  equilibrium value at 

the  end of the  relaxation zone. 

23 TT023pverj a few experi~~ents ccnChzted & the  U~i7ers i t . j  of C ~ l ~ r a d ~  

In the present theoret ical  formulation it was found that 

a r b i t r a r i l y  varying this i n i t i a l  value of the  electron thermal energy 

did not a f fec t  t he  measurable quantities suff ic ient ly  t o  enable such 

deviations t o  be observed experimentally. Consequently, an expression 

w a s  postulated whereby the  electron production rate due t o  ine las t ic  

encounters between atoms was multiplied by a constant value, EA, repre- 

senting an assigned mean energy t o  these free electrons. 

t he  r a t e  of energy ga in  by the free electrons due t o  such encounters 

t o  be expressed symbolically as, 

This enabled 

dn 

'p6 = 'A ( 2) atom-atom col l is ions 

The actual  value of 

two-thirds of i t s  value a t  the  end of the relaxation zone. 

EA was taken as somewhere between one-third and 

Algebraic summation of these s i x  component re la t ions repre- 

senting thermal energy gain by the free electrons due t o  t h e i r  various 
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interact ions r e s u l t s  i n  t h e  t o t a l  thermal energy t ransfer ,  

ables formulation of t h e  f i n a l  equation necessary t o  define t h e  non- 

equilibrium flow. This resu l tan t  ordinary, non-linear d i f f e r e n t i a l  

equation, together with t h e  other f i v e  r e l a t ions  and the  Rankine- 

Hugoniot re la t ions f o r  t he  jump conditions across  the  shock f r o n t  

provide the  complete set of expressions required fo r  t he  def in i t ion  

of t he  relaxation and quasi-equilibrium regions behind a strong normal 

shock front  propagating through argon gas.  

cp, and en- 



. 

AaALYSIS CF THE SHOCK LAYER PRECEDING A CYLINDRICALLY BLU" NCSED BODY 

3.1 INTRODUCTION 

A qualitative,  predominantly experimental, investigation was 

conducted of the shock layer preceding a cylinder-plate. The discon- 

t i n u i t y  i n  conditions across the bow wave is  analogous t o  the jump i n  

conditions across an incident shock f ront  and the Lagrangian formulation 

presented in Section 2.1 i s  equally applicable t o  the shock layer f l o w .  

H e r e ,  however, the coordinate system i s  attached t o  the model, so that 

the f l o w  becomes time-dependent and two-dimensional. Consequently, the 

Lagrangian expressions reduce t o  a set of partial d i f fe ren t ia l  equations 

which cannot be handled as readily as were the time-independent, one- 

dim?nsional relations of Chapter 2. 

The bow wave and shock layer were formed by passage over the 

model of the supersonic f l o w  behind an incident shock front .  Figures 29 

through 3 show these shock layers f o r  various incident shock strengths 

and distances behind the incident shock f ron t .  In  most of these photo- 

graphs there is def ini te  evidence of an electronic relaxation zone 

behind the bow wave, followed by a Egion of intense radiation. 

experimntal resul ts  w i l l  be discussed more f u l l y  in  Chapter 5 ,  and the 

rest of th i s  chapter will be devoted t o  a theoretical  investigation of 

conditions along the stagnation streamline of the model. 

The 
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3.2 I N I T I A L  COITDITIONS 

Calculation of t h e  jump conditions across  t h e  bow wave re- 

quires quantitative knowledge of t h e  upstream flow variables  ahead of 

t he  wave. If t h i s  flow i s  i n  l o c a l  equilibrium, then Glass and Kawada 

show t h a t  the speed of sound, a i s  

24 

e’ 

a 2 = 2 = y e ( l  + a )  RT 
e ye P 

where the  equilibrium spec i f ic  heat  r a t i o ,  ye, can be expressed, from 

thermodynamic considerations, as, 

For t h e  conditions of t h i s  experimental study the  terms containing the  

p a r t i a l  der ivat ives  of the  electronic  energy, W, can be neglected. 

If t h e  flow entering t h e  bow wave emanates from the  region 

downstream of t he  electronic  re laxat ion zone behind the  incident  shock 

f ront ,  it w i l l  be i n  quasi-equilibrium so t h a t  T = T 5 T. In  such 

cases the  preceding equilibrium speed of sound and specif ic  heat  r a t i o  

can be used. When, however, the  bow wave i s  within the  non-equilibrium 

relaxat ion zone behind the  incident  shock front ,  then t h e  degree of 

ionizat ion of t he  flow entering t h e  bow wave can w e l l  be smaller than 

A e  

lo-’ and the e lec t ron  temperature w i l l  be less than t h e  heavy p a r t i c l e  

temperature. 

speed of sound and t h e  specif ic  hea t  r a t i o  w i l l  depend primarily on the  

Under these conditions the  assumption i s  made t h a t  the  
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i -  

properties of' the heavy particles.  Consequently, the following approxi- 

mations can be made fo r  the speed of sound and specif ic  heat r a t i o  i n  the 

flow behind the incident shock front, regardless of the degree of thermal 

equilibrium 
2 

a y ( 1  + CY) RTA 

where 

and it is therefore possible t o  calculate a flow Mach number, M = u/a, 

within t h i s  region. 

In  passing through the bow shock f ront  the following assump- 

t ions  a re  mde: 

a )  No ine las t ic  energy i s  transferred between par t ic les ,  so that 

the  degree of ionization remains constant. 

b) Virtually no e l a s t i c  energy is  transferred between the electrons 

and heavy par t ic les ,  so that the electron temperature remains constant. 

c )  Charge neut ra l i ty  is preserved, so t h a t  there i s  no diffusion 

of electrons upstream of the shock front .  

d )  The density jump through the shock f ron t  is determined by the 

properties of the heavy particles.  

For a perfect gas the density jump across a normal shock f ront  

i s  given by the Rankine-Hugoniot re la t ions as shown i n  Liepmann and 

Roshko, 25 
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where a and b r e f e r  t o  upstream and downstream conditions respec- 

t i v e l y .  

ionized gas when the previously derived r e l a t ions  f o r  Mach number and 

spec i f ic  heat r a t i o  a re  used. 

By assumption d )  t h i s  equation i s  considered t o  apply t o  an 

With a, p, and Te known downstream of the bow shock f ron t  

the other  variables u, p and TA can be calculated from the laws of 

conservation of mass and momentum, and the thermal equation of s t a t e .  

3 . 3  TIME-INDEPENDENT, ONE-DIMENSIONAL FORMULATION 

If the stream tube surrounding the stagnation streamline r e -  

t a i n s  approximately constant area while t ravers ing  most of the shock layer ,  

then the time-independent, one-dimensional equations derived i n  Section 

2 . 1  can be applied i n  order to estimate the stagnation streamline flow 

within the shock layer .  

incident Mach number of 11.32 a re  compared t o  the interferogram shown 

i n  Fig.  32 the theo re t i ca l  e lec t ronic  re laxat ion length within t h i s  

layer  i s  found t o  be much longer than experimentally observed. 

quently, such a constant area stream tube analysis  i n  incorrect .  

However, when such theo re t i ca l  r e s u l t s  f o r  an  

Conse- 

3 . 4  CONSTANT DENSITY FORMULATION 

In  order t o  r e t a i n  ordinary d i f f e r e n t i a l  equations a Lagragian 

formulation of the flow re l a t ions  was attempted. By use of the conser- 

vat ion of mass and momentum re l a t ions  the energy equation can be 
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converted in to ,  

D 1  qB 2 + p - ( - - ) = - - -  
D t  D t P  P 

De 

where e represents the internal  energy of the gas. This expression 

together with the Lagrangian re la t ions  derived in Chapter 2 f o r  the 

ai? electrm p-oduetisn, t h e  Ipite 

g 

of enprm trms-eer ktYeen species, 

and the thermal equation of s t a t e ,  as w e l l  as the integrated form of 

E u l e r ' s  equation f o r  constant density, 

1 2  
p + 2 pu = constant 

const i tute  a determinate s e t  of r e l a t ions  f o r  calculat ing the conditions 

of the f l o w  along streamlines. 

incident shock Mach number of ll.32 did indicate,  as shown i n  Fig. 36, 

that i n  f a c t  such densi ty  variations w e r e  small a t  the stagnation stream- 

l i n e .  However, the theore t ica l  solut ion showed that a gas p a r t i c l e  would 

have t o  increase its ve loc i ty  as it approached the surface of the model, 

an obviously invalid r e su l t .  Consequently, the densi ty  along the stagna- 

t i o n  streamline cannot be constant, suggesting possible e r r o r s  i n  t ry ing  

t o  evaluate this  quantity from the polaroid interferograms. 

Measuremnts of mass densi ty  f o r  an 

No theoretical solutions involving one independent var iable  

w e r e  obtaimd that agreed w i t h  the experimentally observed conditions 

along the stagnation streamline. I n  a l l  probabi l i ty  a more extensive 

invest igat ion is  required involving two spatial var iables ,  as discussed 

i n  Section 5.3. 
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CHAPTER 4 

EXPERIMENTAL E Q U I M N T  AND TECHNIQUE 

4 .1  INTERFEROMETRIC RELATIONS APPLICABLE TO IONIZED FLOWS 

Consider a flow of  p r t i c l e s  comprising a polar izable  species 

i. The complex r e f r ac t ive  index of t h i s  flow i s  ( N  ) = Ni - iki, 

where 

species i. 

where ni i s  the number density of species i and i s  i t s  

'i i complex po la r i zab i l i t y  with real and imaginary p a r t s  

A t  t h e  op t i ca l  frequencies = so tha t ,  

c i  

i s  the  re f rac t ive  index and i?. i s  t h e  absorp t iv i ty  of Ni i 

The complex d i e l e c t r i c  constant i s  (E ) .= 1 + 4rtni(Y ) c 1  c i  

and i Y ' .  

2 

where o n l y t h e  f i r s t  term of t he  binomial expansion i s  included. 

Equating the r e a l  pa r t s  of t h i s  re la t ion ,  

The f r e e  electrons a l s o  contr ibute  t o  the  re f rac t ive  index, 

and with the a i d  of Maxwell's equations and t h e  equation of motion of a 

f r e e  electron t h i s  contribution i n  a tenuous plasma becomes, 

Nel - 1 
- 

2 
where t h e  plasma frequency, w i s  given by, w2 = (4fln e )/me and the  P' P e 

impressed opt ica l  frequency, o 1 21rv. 
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If' the changes i n  r e f r a c t i v i t y  due t o  the various pa r t i c l e s  

are  independent of one another, the t o t a l  e f f e c t  i s t h e  summation of the 

separate components, 

Neglecting the contribution of excited l eve l s  the species i are  com- 

posed of ground s t a t e  atoms and ions, and electrons,  

A(N - 1) = A(NA - 1)+ A(N + - 1) + A(Nel - 1) 
A 

and the t o t a l  fringe s h i f t  between any two regions 1 and 2 f o r  an impressed 

wavelength, A, and op t i ca l  path length, L, is, 

where the subscript  0 refers t o  conditions a t  standard temperature and 

pressure.  A curve of (TiA - l)o versus wave length i s  shown i n  Fig. 3.  

The r a t i o  of po la r i zab i l i t i e s  of the argon ion t o  the  atom can be taken 

t o  be 0.67, as  mentioned by Alpher 6 
and White. 

The Mach-Zehnder opt ical  interferometer was used t o  measure 

the fringe s h i f t s  behind 2) the bow 

wave preceding the cylinder-plate model. I n  the  former case region 1 

was denoted by conditions upstream of the incident shock f r o n t ,  and in 

1) the incident shock f ront ,  and 
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t he  l a t t e r  case by conditions upstream of the bar wave. With the ground 

s t a t e  po lar izabi l i ty  of the atom given by 

47 

and conditions i n  region 1 Bnown, measurements, a t  two optical wavelengths, 

of the fr inge s h i f t s  a t  a point i n  region 2: behind the incident shock 

o r  the bow wave, enabled the density and degree of ionization to  be cal- 

culated. 
0 0 

The wavelengths chosen i n  t h i s  study, 4500 A and 5890 A, w e r e  

su f f i c i en t ly  spread t o  enable good experimental accuracy t o  be obtained 

a t  an op t i ca l  path length of 5 cm, the width of the shock tube. 

4.2 THE SHOCK TUBE 

The Stanford krophys ics  Laboratory shock tube, shown i n  

Fig.  4, is of extruded aluminum, 3 f e e t  i n  length with an i n t e r i o r  

cross-section two inches square and w a l l s  0.75 inches th ick .  Figure 5 

is  a schematic representation of the  shock tube and the adjoining in- 

s t r m n t a t i o n .  

a ted the driven sect ion to  a pressure of the order of 16’ mm Hg pr io r  

t o  f i l l i n g  it with argon. 

oxygen, di luted w i t h  helium, was used a s  the dr iver  gas and igni ted by 

a se r i e s  of spark plugs. 

diaphragm and sent the incident shock f r o n t  down the driven sect ion i n t o  

the argon working gas. 

located 20 f e e t  darnstream of the diaphragm. 

glass  op t ica l  wlndows, 2.75 inches i n  diameter, 0.75 inches thick,  f lat  

Pumping s ta t ions  located a t  each end of the tube evacu- 

A stoichiometric mixture of hydrogen and 

The heated gas ruptured a prescribed aluminum 

The t e s t  sec t ion  and model, shown i n  Fig. 6, w e r e  

A pair of boros i l ica te  crown 



t o  0.25 wavelengths, and pa ra l l e l  t o  0.0005 inches was used t o  view the 

flow, records of which were kept by a ro t a t ing  mirror camera, shown i n  

Fig.  7, or on polariod snapshots. Three barium t i t a n a t e  pressure t rans-  

ducers mounted f lush  with the shock tube walls and located upstream of 

the windows measured the incident shock ve loc i ty  (see Fig. 8 ) .  A dump 

chamber a t  the end of the driven sect ion and separated from it by a t h i n  

aluminum diaphragm which ruptured on contact with the shock, prevented 

wave ref l e  c t  ion. 

4.3 ADDITIONAL EQUIPMENT AND INSTRUMENTATION 

The Mach-Zehnder interferometer, on loan through the courtesy 

of the Lockheed Missiles and Space Company Research Laboratories, i s  

pictured i n  Fig.  9, and a schematic of the interferometric system i s  

shown i n  Fig. 10. 

The relaxat ion phenomenon behind the incident shock f ront  

was observed by use of the ro ta t ing  mirror camera which recorded time 

resolved interferograms of the flow. An exploding 1 m i l  tungsten wire 

powered by a 7.5 ppfd Sangamo condenser charged t o  20 kv provided a 

strong l i gh t  source of over 100 psec duration. 

s t a in l e s s  s t e e l  hexagonal mirror with faces  ground f l a t  t o  0.5 wave- 

lengths, and was spun by a gas powered turbine motor capable of reach- 

ing 80,000 r.p.m. 

thereby sweeping the image of a s l i t  portion of the flow, 1 .5  inches 

high and 0.002 inches wide, over a s t r i p  of Royal X-pan film a t  suf- 

f i c i e n t  speed t o  obtain time resolutions of 0.15 psec. 

The camera contained a 

A 3 inch, f-2.5 lens  focused the l i g h t  on the mirror, 

. 
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A number of tests were conducted t o  investigate the shock 

1 -  

layer preceding the 1/2 inch diameter cylinder-plate model. S t i l l  

photographs of t h i s  Layer were taken w i t h  Polaroid 3000 speed f i l m  

while E K e r r  ee l i  with an electronic "shutter" speed of 5 psec, manu- 

factured by the Kappa Scientific Corporation, w a s  used in place of 

the  radiation stop i n  Fig. 10 t o  reduce overexposure from gaseous 

radiation. 

In  both the time resolved and most of the Polaroid photo- 

graphs the images w e r e  s p l i t  by two interference f i l t e r s  si tuated a t  

the image plane of the test  section. 

had band widths of 90 A. 

0 0 

These f i l t e rs ,  4300 A and 5890 A, 
0 

Two dual beam Tektronix oscilloscopes with Polaroid attach- 

ments were used to  record both the incident shock speed and the time 

a t  which the Kerr ce l l  opened. 

4.4 ExpERlMENTAL TECHNIQUE 

The shock tube and dump tank were pumped down fo r  a minimum 

of two hours pr ior  t o  the start of an experimental run. A t  the end of 

t h i s  period the pressure i n  the driven section w a s  measured by an 

ionization gauge t o  be of the order of mm €Ig. This section was 

then f i l l e d  with argon t o  a pressure between 3 and 5 mm Hg, depending 

on the  run, after which a stoichiometric m i x t u r e  of combustion gases 

was pumped in to  the driven section. 

i n  t h i s  mixture  depended on the  desired shock velocity. 

of the f i l l i n g  procedure the temperature of the driven section was 

The amounts of the component gases 

Upon completion 
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measured and the l i g h t  source condenser charged. Then the angular 

ve loc i ty  of the ro ta t ing  mirror was s t ab i l i zed  a t  approximately 600 

r . p . s .  and the spark plugs d i scha rged to ign i t e  the combustion gases. 

The heated flow ruptured the main diaphragm sending an incident shock 

f ron t  through the driven gas. A s  the  shock passed the barium t i t a n a t e  

c rys t a l  gauges s ignals  were sent t o  the oscil loscopes which recorded 

the shock veloci ty  and tr iggered the l i g h t  source condenser. When 

required, a magnetic f i e l d ,  produced by the discharging condenser, 

opened the Kerr c e l l .  
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FIGURE 6 .  Test  Sec t ion  and Cyl inder -Pla te  Model 

FIGURE 7. Rota t ing  Mirror Camera 
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FIGURE 9. Mach-Zehnder Optical Interferometer 
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5.1 (3zNEmL COxqCEPTs 

U s e  of optical  interferomtryin quantitative studies of 
6 electron densities was f i rs t  shown feasible by Alpher and White. 

Measurement of both the heavy particle and electron densities is  possible 

a t  any point within a plasma flow irrespective of whether the conditions 

a t  that  location are i n  local thermal  equilibrium. The dispersive 

nature of the electrons tends to  produce a fringe shift opposite t o  

that of the heavy particles, and becoIIu3s noticeable for electron 

densit ies of the order of 10~7 m-3. 

Since the experimental data is valid o n l y t o  the accuracy 

t o  which the electronic and visual data can be recorded and reduced, 

it is important t o  determine where and t o  w h a t  magnitude e r rors  in the 

measurements can occur. The pressure transducer-oscilloscope s y s t e m  

enables the Mach number of the incident shock f ront  t o  be determined 

within l$, w h i l e  measurements of fringe s h i f t s  are unlikely t o  exceed 

an accuracy of 0.1 of a fringe, dependent, of course, on the amount 

of photographic enlargement. 

rotat ing mirror film s t r ip s  are inaccurate a t  less than 0.5 psec, and 

the start of operation of the Kerr c e l l  cannot be estimated t o  better 

than 1 psec. 

Actual time readings f r o m  the time resolved 

I n i t i a l  argon driven section pressures are probably 
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only within 0 .1  mm Hg, an inaccuracy that could g rea t ly  a f f ec t  low 

pressure t e s t s .  

shock t e s t s  is estimated and presented i n  an e r r o r  "box" drawn on each 

p lo t  of fringe p ro f i l e s  . 
i n  a c t u a l i t y b e  of fse t  by the dimensions of the box. 

The cumulative e f f ec t  of these e r r o r s  f o r  the incident 

Any experimental point on such a curve may 

The magnitude of the e f f e c t  of impurit ies i n  the relaxat ion 

processes i s  as yet undetermined. 

driven section, pr ior  t o  each run i s  of the order of loe5 mm Hg and is  

so le ly  a t t r ibu ted  t o  impurit ies,  and if the argon gas i s  considered t o  

have l e s s  than ten pa r t s  of impurit ies per mil l ion,  then a t  a pressure 

of 5 mm Hg there would be approximately twelve pa r t s  of impurit ies per 

mil l ion par ts  of argon. 

impurit ies i s  very low t h e i r  i n e l a s t i c  co l l i s ion  frequency would have 

t o  be extremely large i n  order t o  produce appreciable amounts of 

e lectrons t o  influence the e lec t ronic  re laxa t ion  length of the gas. 

This does not, of course, include i n e l a s t i c  encounters of the gas atoms 

with the in t e r io r  surfaces of the shock tube which could produce addi- 

t i o n a l  ionization. 

wherein a l l  conditions were equal except f o r  the i n i t i a l  pressures 

which were 3 and 5 mm Hg respect ively.  

t h a t  the relaxation lengths could be r e l a t ed  t o  each other  by con- 

s ider ing only the gas parameters without including the e f f e c t s  of i m -  

p u r i t i e s .  This r e s u l t  implies that impurit ies may ac tua l ly  not have 

any appreciable e f f e c t  on the relaxat ion length,  a conclusion not 

If the pressure of the evacuated 

Even if the ionizat ion po ten t i a l  f o r  such 

Figures 16 and 17 show f r inge  p ro f i l e s  for t e s t s  

I n  these t e s t s  it was found 

generally supported by other authors.  1,4 



If impuri t ies  have l i t t l e  e f f e c t  then the  i n i t i a l  production 

An in -  of f r e e  e lectrons is  mainly through co l l i s ions  between atoms. 

d i r e c t  attempt, as shown i n  Section 2.3.2 is  made t o  measure t h e  atom- 

atm ion iza t io r  cross-sect ioo.  However, due to fzrs-&ficient experi- 

mental data t h e  results a r e  inconclusive. 

In addi t ion t o  evaluating t h e  production r a t e  of e lectrons 

by co l l i s ions  between atoms, it i s  necessary t o  determine the  mean 

energy given, by such encounters, t o  the  r e su l t an t  f r e e  e lectrons.  For 

t he  conditions of t h i s  invest igat ion the  i n i t i a l  temperature of the elec- 

t rons  w a s  W e n  t o  be within one-third t o  two-thirds of i t s  value a t  the 

end of t he  relaxat ion zone. However, as noted i n  Section 2.4 .l. 5 ,  f o r  

s t rong shocks the re  may a c t u a l l y  be l i t t l e  var ia t ion  of t h i s  temperature 

throughout t h e  e n t i r e  relaxation zone. 

A nmber of e f f e c t s  within the  flow have been neglected, such 

as the  influence on t h e  gas of  precursor radiat ion,  e lec t ronic  diffusion, 

v i scos i ty ,  rad ia t ion  pressure, radiat ion enthalpy, and volume forces .  

The precursor rad ia t ion  f o r  t he  conditions of t h i s  study is  estimated 

by Wong and therefore  

has negl ig ib le  e f f e c t  on the  flow close t o  t h e  incident  shock f ron t .  

N e a r  the end of the re laxs t ion  zone, however, such rad ia t ion  may exer t  a 

g rea t e r  influence, though such an e f f e c t  w a s  not measured i n  t h e  experi- 

ments. Electron diffusion upstream through the  incident  shock f ron t  has 

been neglected due t o  the low electron dens i t i e s  behind the  f ron t  and 

the  strong Coulombic in te rac t ion  between charged p a r t i c l e s .  However, 

t he  l a rge r  e lectron dens i t i e s  and temperatures i n  t h e  shock layer  

preceding the cylinder-plate mode may produce s igni f icant  e lectron 

4 -12 t o  give degrees of ionizat ion l e s s  than 10 
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diffusion as w e l l  a s  precursor radiat ion through the  bow wave. 

result would be a t h i n  heavy p a r t i c l e  shock f ron t  imbedded within a wider 

e lectronic ,  o r  thermal, region as postulabe by authors such as J a f f r i n .  

However, possibly due t o  the  in sens i t i v i ty  of op t i ca l  interferometry t o  

The 

26 

electron dens i t ies  below such thermal regions were not ex- 

perimentally observed, Viscosity, rad ia t ion  pressure, rad ia t ion  enthalpy, 

and volume forces could safe ly  be neglected under t h e  experimental con- 

d i t i ons  of t h i s  study. 

In  l i n e  with the  postulated atomic model multiply excited or 

ionized atoms and ions were considered t o  ex i s t  i n  such s m a l l  quant i t ies  

t o  have negligible e f f e c t  on the  flow. 

a tures  or pressures than considered here such e f f e c t s  might become 

s ign i f i can t  and would have t o  be included, 

However, under higher temper- 

Autoionization w i l l  also a f f e c t  t he  r a t e  of e lectron produc- 

t i on .  However, f o r  the  argon atom the  energy difference between t h e  

two s e r i e s  l i m i t s  i s  s m a l l  and t h i s  phenomenon w a s  assumed t o  have a 

negl igible  e f fec t  

Lowering of the  ionizat ion po ten t i a l  due t o  the  e l e c t r i c  

microfields between charged p a r t i c l e g  and t h e  s e r i e s  truncation of 

t h e  p a r t i t i o n  functions have been discussed previously i n  Section 1.3. 

A s  with autoionization these involve complicated processes requiring 

fu r the r  invest igat ion.  The theo re t i ca l  formulation indicates ,  however, 

t h a t  a s m a l l  var ia t ion i n  t h e  amount of lowering of t he  ionizat ion 

l i m i t  does a f f ec t  t h e  f r inge  p r o f i l e  su f f i c i en t ly  t o  enable experimental 

detection, thereby suggesting shock tube op t i ca l  interferometry as a 

possible method f o r  measuring t h i s  phenomenono 
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1 -  

Tihe theore t ica l  estimation of t he  radiated energy loss  from 

His treatment shows t h a t  t h e  flow was based on the  results of Horn.7 

f o r  bremsstrahlung and free-bound t rans i t ions  the gas, under the 

experimental conditions, is opt ica l ly  th in  and these radiation losses  

can be calculated by classical o r  hydrogenic techniques. The gas is 

elso ~ptAcaUy t h i n  for bound-bound t r ans i t i ons  between the upper 

excited energy levels ,  which were t rea ted  e i the r  hydrogenically o r  by 

t h e  method uf Bates and For t rans i t ions  between the  lower 

excited leve ls  of 3d t o  4s and 4p t o  4s t he  op t i ca l  thickness of the 

gas approximated one. Radia t ion  from such t rans i t ions  was calculated 

by considering the  losses  of a uni t  volume located a t  the  center  of a 

sphere of gas having a radius of one inch and at  uniform conditions. 

Horn ac tua l ly  analysed a number of geometrically d i f fe ren t  models be- 

s ides  the sphere, including a spa t i a l ly  i n f i n i t e  shock front ,  where 

conditions were uniform within planes parallel t o  the  f ront .  Since 

the t rans i t ions  i n  question involved small radiat ion losses  i n  a l l  

these models t he  overa l l  losses from the gas were essent ia l ly  the  same 

regardless of which geometrical configuration was chosen. For the  

resonance t rans i t ions  where the gas was opt ica l ly  thick and the  energy 

of  t r ans i t i on  was large the spherical  model was used. 

i -  

5.2 IiFIAxATION AND QUASI-EQUILIBRIUM EiEGIONS BEHIND TEE II?CIDENT 

SHOCK FRONT 

Experimental time resolved interferograms of t he  relaxst ion 

and quasi-equilibrium regions behind the incident shock f ron t  are shown 

i n  Figs. 11, 12, 13 and 14. These measurements are p lo t ted  on the  
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corresponding theore t ica l ly  derived f r inge  prof i les ,  numerically calcu- 

la ted  on a Burroughs 5500 d i g i t a l  computer, and shown i n  Figs.  15, 16, 

17 and 18. Shortening of t he  relaxat ion length, due t o  t r i p e l i n g  the  

atom-atom ine la s t i c  co l l i s ion  rate, i s  shown i n  Fig. 16. Note t h a t  

such var ia t ions tend t o  change the  length of t he  relaxat ion zone but 

not t he  shape of t h e  f r inge  p ro f i l e .  

I n  a l l  t h e  experimental runs the  f r inges  jumped i n  an upward 

d i rec t ion  through the  incident  shock f ron t .  This displacement corre- 

sponded t o  a change i n  flow conditions which could be calculated from 

the  Rankine-Hugoniot re la t ions .  Atom-atom i n e l a s t i c  co l l i s ions  then 

began producing f r e e  electrons which acquired thermal energy through 

e l a s t i c  and superelast ic  ( co l l i s iona l  de-excitation) encounters with 

heavy pa r t i c l e s .  

avai lable  t o  give a degree of ionizat ion of t h e  order of 

After  a subs tan t ia l  supply of such electrons w a s  

t h e  

computational results showed t h a t  i n e l a s t i c  encounters between these 

electrons and atoms became the  dominant ionizat ion process. For 

strong shocks this  changeover occurred within a few millimeters behind 

t h e  shock front .  A s  t h e  electron density increased, t he  dispersive 

nature of the electrons began sh i f t i ng  the  f r inges  i n  a downward d i -  

rec t ion  u n t i l  a t  the  end of t he  relaxat ion zone they had a t ta ined  

a minimum posit ion i n  c lose agreement with the  equilibrium Saha pre- 

d ic t ion .  Past t h i s  locat ion the  strongly rad ia t ing  flow retained 

e s sen t i a l ly  equal heavy p a r t i c l e  and e lec t ron  temperatures and t rave l led  

through a quasi-equilibrium region dominated by recombination processes. 

I n  Figs. l9> 20, 21  and 22 the  theo re t i ca l  and experimental 

degrees o f  ionization within the  relaxat ion and quasi-equilibrium 
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regions are given f o r  incident  shock Mach numbers of 18.0 i n t o  an  i n i t i a l  

pressure of 3 mm Hg, 16.3 i n t o  3 mm Hg, 16.3 i n t o  5 mm Hg, and 14.96 

i n t o  5 mm Hg. Note how l i t t l e  ionizat ion occurs p r i o r  t o  the  end of 

t h e  relaxat ion zone. 

mass and e lec t ron  dens i t i e s  as well as gas pressure, p a r t i c l e  t e m p e r a -  

t,ij-res; and emitted rad ia t ion  p ro f i l e s  f o r  t he  incident  shock Mach number 

18.0 test .  Note t h a t  t he  density r a t i o  r i s e s  from i t s  per fec t  gas value 

of nearly four  behind the shock f ron t  t o  above eight  a t  the  end of the  

relaxat ion zone, and then continues t o  increase i n  the  quasi-equilibrium 

region. 

by the  flow u n t i l  it reaches the  end of t he  relaxat ion zone, where such 

emission becomes appreciable. 

Figures 23 through 27 show normalized curves of 

Also note i n  Fig. 27 tha t  r e l a t i v e l y  l i t t l e  rad ia t ion  i s  emitted 

I n  ca lcu la t ing  the  amount by which t h e  ion iza t ion  po ten t i a l  

was lowered a t  each point within the flow, the  Fcker-Weizel polariza- 

t i o n  theory, as out l ined by Pomerantz? was used and resu l ted  i n  lower- 

ings  of approximately 0.15 ev at t h e  end of t he  relaxat ion zone, as 

shown i n  Fig. 28. 

approximately 0.35 ev a t  t h i s  same locat ion.  

subs t an t i a l  enough var ia t ions  i n  t h e  theo re t i ca l ly  computed fringe 

pa t te rns  t o  be observable experimentally. The results favored the  

polar iza t ion  theory and suggested t h a t  shock tube s tudies  might have 

p o s s i b i l i t i e s  i n  analysing this phenomenon. 

The Ingl is-Tel ler  theory predicted lowerings of 

This difference produced 

5.3 THE SHOCK IAYER PRECEDING THE CYLINDER-PIATE MODEL 

Polaroid interferograms of t he  shock layer  preceding the  

cylinder-plate model f o r  various inc ident  shock s t rengths  and a t  
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various distances behind the incident front are shown in Figs. 29 

through 34. Schematically the flow over the model is represented in 

Fig. 35. 

obtained of which these six photographs, covering the entire range of 

A total of twenty-three good shock layer interferograms were 

incident shock strengths investigated, are a representative sample. 

A number of the tests were conducted at approximately the same con- 

ditions and yielded similar fringe profiles, thereby assuring repeat- 

ability of results. Five of these six interferograms will. be discussed 

qualitatively while the sixth, shown in Fig. 32, which was used to 

check the validity of the theoretical study described in Chapter 3, 

w i l l  be analyzed quantitatively. In all these experimental runs the 

initial pressure of the quiescent argon gas was 5 mm Hg and the ex- 

posure time of the interferogram was approximately 3 psec. 

The interferogram shown in Fig. 29, for an incident shock 
0 

Mach number of 13.57, was taken with a 5890A filter. The bow wave is 

seen a few millimeters downstream of the end of the relaxation zone 

behind the incident shock front. Consequently, the incoming flow into 

the shock layer preceding the model is in quasi-equilibrium with a 

calculated degree of ionization above 0.05 and an electron density of 

the order of Using the fringe shift equation derived in 

Section 4.1 and assuming that the degree of ionization remains constant 

through the shock front, the fringe shift is found to become negative 

(downward) at a degree of ionization of approximately 0.07. Conse- 

quently, the ionization in this experimental run must be above 0.07 

and the usual upward fringe shift, due to the increase in mass density 

through the shock front, is suppressed by the dispersive nature of the 
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e lec t rons  which causes the fringes t o  d ip  downward. 

continues through approximately one-third of the standoff distance of 

the bow wave, ind ica t ing  a region wherein an increasing number of 

e lectrons are produced, u n t i l a  maximum i s  reached at  the minimum f r inge  

posi t ion.  

domimte; accompanied by intense radiat ion.  

This negative s h i f t  

From the re  up t o  the model's surface recombination processes 

The interferogram shown i n  Fig. 30, f o r  an incident shock 

Mach number of 12.58, was split i n t o  wavelengths of 589m (top)  and 

450OA (bottom). 

behind the incident  shock front and the degree of ionizat ion of t he  

flow entering the bow wave i s  qui te  small. 

re laxat ion zone, extending through two-thirds of the bow wave's stand- 

off distance, appears within the shock layer .  

s ignifying la rge  e lec t ron  concentrations i s  noticeable throughout a 

region beginning j u s t  p r i o r  t o  the end of t h e  shock layer ' s  re laxat ion 

0 

0 

The bow wave i s  within the electronic  re laxat ion zone 

Therefore, an e lec t ronic  

Brtreme radiation, 

zone and extending through 

surface of t he  model. 

Figure 31, a t  an 

interferogram taken w i t h  a 

the  relaxat ion zone behind 

the recombination dominated region up t o  the  

incident shock Mach number of 2 .07 ,  is  an 

589QA filter. The bow wave i s  w e l l  within 

the incident  shock f r o n t  and the  incoming 

0 

flow i s  calculated t o  be a t  a Mach number of 1.38, with a degree of 

ionizat ion of 0.00336, and an e lec t ron  density of 2.19 (10 ) cm . 
In t h i s  t e s t  t he  re-tion length within the shock layer  extends 

through one-half of t he  bow wave's standoff distance.  

vious interferograms extreme radiat ion i s  visible downstream of the 

end of the relaxat ion zone and up t o  the surface of the model. 

15 -3 

A s  i n  t h e  pre- 
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Considering the standoff distance of the bow wave, t he  relaxat ion 

length within the  shock layer ,  and t h e  conditions of t h e  incoming flow 

i n t o  the  bow wave, t h i s  t e s t ,  which was repeated and produced iden t i ca l  

r e su l t s ,  i s  n o t  consis tent  with t h a t  shown i n  Fig.  30, a discrepancy 

which has not been resolved and remains as t h e  only qua l i ta t ive ly  un- 

answered phenomenon i n  t he  s e r i e s  of experiments. 

The interferograms pictured i n  Fig. 32,for an incident  shock 
0 

Mach number of 11.32, has a s p l i t  wavelength f i e l d  of 5890 A ( top )  and 

4500 A (bottom). 
0 

This tes t  was used t o  evaluate the  v a l i d i t y  of the 

theo re t i ca l  work developed i n  Chapter 3. The center l ine  of t he  bow 

wave i s  11.5 centimeters downstream of the incident  shock front ,  and 

wel l  within i ts  relaxat ion zone, and the  r a t i o  of standoff distance of 

t he  bow wave t o  the nose radius  of t he  model i s  1.125. The computed 

conditions of t he  incoming flow i n t o  the  bow wave are :  

pressure = 1.079(10 6 ) dynes/cm 2 , density = 4.359(10 -5 ) gm/cm 3 , 
veloc i ty  = 2.737( 10 5 ) cm/sec, 

heavy pa r t i c l e  temperature = 1.183( 10 ) OK, 

electron temperature = 1.098(10 ) O K ,  

Mach number = 1.43, 
4 

4 degree of ionizat ion = 0.00525, 

e lectron density = 3.444( 10 15  ) O K  

r a t e  of radiated energy densi ty  = 1.822(10 7 ) ergs/cm 3 -see.  

Fringe s h i f t  measurements were made i n  both wavelengths near 

t h e  stagnation streamline a t  the  following locat ions:  across  the bow 

wave, halfway through the  relaxat ion zone, a t  the  end of t he  relaxation 

zone, a t  t h e  surface of the  model. 

t o  vary slowly, near the bow shock's center l ine,  i n  the  d i rec t ion  

Since the  f r inge  p ro f i l e s  a r e  seen 
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perpendicular t o  the flow, these measurements w e r e  assumed t o  hold at 

the stagnation streamline and enabled the  mass and electron dens i t ies  

and the degree of ionization t o  be calculated there. 

normallzed t o  their values just upstream of the bow wave, are shown 

The results, 

i n  Fig. 36. Solid l i n e s  have been drawn through the experimental data 

t o  show the  e-cted trends. 

t i o n  across the buw wave i s  not  equal t o  unity as anticipated.  

Note that the normalized degree of ioniza- 

However, 
- 

this discrepancy i s  within the experimental reading er ror  of the fringe 

shifts on the polssoid interferogram, and does not enable any conclu- 

s ions  t o  be h w n  concerning the amount of electron production through 

the bow shock f ron t .  A s  i n  the electronic  relaxation behind the incident 

shock fronts, t he re  i s  a sharp rise i n  the degree of ionizat ion and i n  

the electron density near t h e  end of the  relaxat ion zone within the 

shock layer.  A slaw decrease i n  these quant i t ies  occurs as the surface 

of the model i s  approached. Harever, the  m&ss density experiences a 

slow increase throughout the e n t i r e  shock layer .  It m u s t  be noted that 

s ince the  fringe shif ts  a r e  small and can be read no b e t t e r  than t o  

0.1 fringes errors i n  fr inge measurements may be above 5 6 ,  and these 

results do not have the accuracy obtained f o r  the incident shock pro- 

f i les.  Nevertheless, these curves are, a t  least, quaLitatively correct .  

Figure 33, f o r  an incident shock Mach number of 10.47, shows 
0 0 

a s p l i t  wavelength interferogram, again with 5890~ ( top)  and 45OQA 

(bottom). A t  these s lower incident shock f ron t s  with t h e i r  corre- 

sponding longer re laxat ion lengths the model i s  wel l  wi th in  this non- 

equilibrium region when the  interferogram was taken. Theoretical 

calculat ions show that the flow enter ing the bow wave has a degree of 
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-4 
ionization of the order of 10 

10 cm . These low values result in a long relaxation zone within 

and an electron density of the order of 

14 -3 

the shock layer preceding the model, extending through approximately 

nine-tenths of the standoff distance of the bow wave. Comparatively 

little radiation is noticeable near the surface of the model. 

In Fig. 34, where the incident shock Mach number is 10,12, 
0 

the interferogram is again split into wavelengths of 5890A at the top 

and 4500A at the bottom. 
0 

A s  the incident Mach number of the shock 

decreases to this value the flow approaches that of a perfect gas with 

exceedingly long relaxation lengths. The bow wave is also weak and, 

for the short exposure times of the polaroid film, the flow within 

the shock layer appears to have little ionization and no visible 

radiation. 

In comparing the results of the interferogram in Fig. 32 to 

those obtained from an analysis based on Chapter 3 and appli.cable near 

the stagnation line, the following conclusions were drawn. 

1) A one-dimensional, time-independent solution resulted in an 

electronic relaxation length behind the bow wave far in excess of that 

measured experimentally. Though the shock layer flow is neither one- 

dimensional, nor time-independent, the latter condition is most likely 

approached within the slowly varying portions of the relaxation and 

quasi-equilibrium regions behind the incident shock front. However, 

if the shock layer is to be evaluated when the incoming flow into 

the bow wave emanates from the end of the relaxation zone the flow must 

be treated as time-dependent. Assuming a small probability for such 

occurrence in any experimental run future investigations may find it 

66 



wise t o  r e t a in  a time-independent formulation, but consider a s p a t i a l l y  

two-dimensional s e t  of re la t ions .  

equations could be reduced t o  ordinary d i f f e r e n t i a l  r e l a t ions  by ex- 

panding the dependent parameters i n  terms of known functions of one 

of the independent var iables  and unknown functions of the other.  

an approach was used tx cclntie' fm a reacting, n,an,-,rssat.ing hl.luzt 

The r e su l t an t  p r t i a l  d i f f e r e n t i a l  

Such 

body f low.  

funct ional  expansion i n  order t o  guarantee quick convergence of the  

se r i e s .  

2) 

Care m u s t  be exercised i n  the se lec t ion  of the appropriate 

A time-dependent constant densi ty  solut ion yielded a 

physically inva l id  f l o w  wherein the gas veloci ty  increased as the  

p a r t i c l e s  approached the stagnation point.  

Consequently, t he  flow near the stagnation line can ne i ther  

be t r ea t ed  by one-dimensionalmethods, nor approximated by a constant 

density gas.  
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FIGURE 11. Interferogram of Mach Number 18.0 Inc iden t  Shock Fron t  
(3mm Hg) 

FIGURE 12.  In te r fe rogram of Mach Number 16.3 Inc iden t  Shock F ron t  
( m n  Hg) 
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FIGURE 20. Degree of Ionization Behind Mach Number 16.3 Incident 
Shock Front (3mm H g )  
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FIGUFE 31. Interferogram of t h e  Shock Layer Preceding t h e  Cylinder-  
P l a t e  ( Inc iden t  Shock Nach Number 12.07) 

FIGURF 3 2 .  In te r fe rogram of t h e  Shock Layer Preceding t h e  Cylinder-  
P l a t e  ( I n c i d e n t  Shock Mach Number 11.32) 
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FTG?-BE 33. Interferogran? of the Shock Layer Preceding t h e  Cylinder-  
P l z t e  ( Inc iden t  Shock Fhch X’wber 10.47) 

F I G U F Z  34. Interferogram of the  Shock Layer Preceding t h e  Cylinder-  
P l a t e  ( Inc iden t  Shock Ikch  Number 10.12)  
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CHAPTER 6 

SUMMARY AND CONCLUSIONS 

The electronic re laxat ion phenomenon i n  a shock heated argon 

gas i s  a complex process requiring invest igat ion of t he  microscopic 

co l l i s iona l  and rad ia t ive  mechanisms within t h e  flow. A Lagrangian 

mathematical formulation of such a non-equilibrium, rad ia t ing  argon 

plasma flow consists of s i x  re la t ions ,  th ree  of which a r e  ordinary non- 

l i nea r  d i f f e ren t i a l  equations. These expressions include the  e f f ec t s  

of e l a s t i c  and i n e l a s t i c  encounters between the  following species:  

ground state atoms, excited atoms, ground s t a t e  ions, and free electrons.  

Radiation losses are calculated by invest igat ing the  possible t r ans i t i ons  

within the  atom and t h e  o p t i c a l  depths of t h e  gas associated with each 

one. Additional e f f ec t s  such as e l e c t r i c  microfield lowering of the  

ionizat ion poten t ia l  and se r i e s  truncation of t he  atomic p a r t i t i o n  func- 

t i o n  are  a lso considered. 

The time-independent, one-dimensional reduced s e t  of re la t ions  

i s  applied t o  the flow behind a strong, normal, incident  shock f ron t .  

Resulting fringe p ro f i l e s  of t he  electronic  re laxat ion and quasi- 

equilibrium f low regions, f o r  Mach numbers of 11 t o  18 i n t o  i n i t i a l  

argon pressures of 3 t o  5 mm Hg, cor re la te  w e l l ,  f o r  a r b i t r a r i l y  chosen 

i n e l a s t i c  col l ison r a t e s  of t he  atoms, with the  experimental t i m e  re- 

solved dual wavelength interferograms. 
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As the atoms pass through the shock f ron t  they experience a 

jlllmp in conditions which obey the Rankine-Hugoniot r e l a t ions .  Subsequent 

atom-atom i n e l a s t i c  co l l i s ions  produce the  i n i t i a l  supply of f r e e  e lec-  

t rons .  

of a f e w  e lectron vol t s ,  the electron production rate by t h i s  mechanism, 

vhich dominates only i n  the region close t o  the shock f ront ,  i s  a rb i -  

t r a r i l y  chosen t o  correlate  the theo re t i ca l  re laxat ion length with i t s  

experimental value. 

approximately one millimeter for t he  stronger shocks, an adequate 

rider of f r e e  e lectrons are available so that electron-atom col l i s ions  

dominate the  ionizat ion processes. 

Since such i n e l a s t i c  cross-sections are  not known for energies 

Within a short distance behind the  shock f ron t ,  

Relatively small changes occur i n  the flow variables  within 

the relaxat ion zone u n t i l  c l o s e t o i t s  end where conditions rapidly 

change. b s s  and electron densi t ies ,  pressure, and emitted rad ia t ion  

a l l  r i s e  sharply u n t i l ,  a t  the  end of the relaxat ion zone, conditions 

agree with the  Saha equilibrium predict ion.  Then, i n  the quasi-equi- 

librium regime, where the heavy particle and electron temperatures 

a re  equal, recombination processes dominate and the degree of ioniza- 

t ion ,  e lectron density, gas temperature, and emitted rad ia t ion  decrease 

slowly, while the mass densi ty  and the  pressure continue t o  experience 

a steady r i s e .  

Both the time-independent, one-dimensional, and the t i m e -  

dependent Lagrangian formulations were applied along the stagnation 

l i n e  within the shock layer  preceding the cylinder-plate model. In  

order t o  r e t a i n  a s e t  of ordinary d i f f e r e n t i a l  equations constant 



densi ty  was assumed i n  the Lagrangian formulation. However, ne i ther  

of these theore t ica l  treatments agreed with the experimental r e s u l t s ,  

since the former produced relaxat ion lengths behind the bow wave f a r  

i n  excess of those measured experimentally, and the l a t t e r  resu l ted  i n  

the physical ly  invalid solut ion wherein the flow ve loc i ty  increased 

a s  the gas pa r t i c l e s  approached the stagnation poin t .  

Qualitative r e s u l t s  of the experimentally obtained s t i l l  

Polaroid interferograms of the shock layer  indicate  l i t t l e  e lec t ronic  

re laxat ion within t h i s  layer  f o r  the higher incident  shock Mach numbers 

above 13, when the incoming flow emanates from t h e  quasi-equilibrium 

region behind the incident shock. For weaker incident shocks, below 

13, the  interferograms were taken while the model w a s  within the re -  

laxa t ion  zone behind the incident shock f r o n t .  Therefore, the flow 

enter ing the bow wave had a r e l a t i v e l y  small e lec t ron  density,  

causing within the shock layer ,  an e lec t ronic  re laxa t ion  zone which 

varied i n  length depending on the s t rength of the incident  shock f r o n t .  

The region beginning j u s t  p r io r  t o  the end of the shock l a y e r ' s  

re laxa t ion  zone and extending t o  the surface of the model was marked 

by considerable rad ia t ion  f o r  incident shock s t rengths  above 10.5. 

When t h i s  Mach number decreased t o  approximately 10 the degree of 

ionizat ion became so small a s  t o  be undetected i n  the f r inge  p ro f i l e s  

and the interferograms appeared s imilar  t o  those expected f o r  a per fec t  

gas flow. 

84 



AppEEjDM A 

D-TIOH OF A FulrTcTIOmAL FORM FOR TBE RADLATION DENSITY 

Nichollsn considers a volume element (dx) ( 1) emitting 
dR - p dx into the so l id  angle dR 

JV 45r 

The intensity increment at 

element into dR is, 

x due to the emission of this volume 

where Kv is the mass absorption coefficient. If the intensity 

is isentropic, i.e., independent of angle, it can be obtained by 

integrating the above expression, resulting in 

JV 
X 

Iv = 
dIV = - [1 - exp(-KVpX)] 

K 
V 0 

However, from Kirchoff's law, for thermal equilibrium, 



j V  - = B ( T )  
K V 

V 

the r e l a t ion  
A and s ince t h e  opt ica l  depth i s  defined as, 

denoting in tens i ty  becomes, 

T = KVpx 
V 

Consider, now, a volume V with surface area 6, 

The t i m e  required for t h e  rad ia t ion  t o  t r a v e l  the  distance s i s  s / c .  

Therefore, the  energy i n  J' is ,  

But, d6 cos f l  s = dV, so t h a t  pR(v)  = ; 1 I dR, or i f  t he  in t ens i ty  
4x R V  

i s  isentropic ,  p,(v) = - I . 
c v  

Substi tuting t h i s  r e l a t ion  i n t o  t h e  above expression f o r  

i n t ens i ty  yields, 
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DlZE8KIM!l!ION OF TBg VOLUMF, ABSORPTION COEFFICIENTS FOR THE TWO RESONANT 

T!EAisITIGE ma4 TEE 4s b - v m ,  AT TEE EEmAml F*wq"mJcY 

Consider t h e  na tu ra l  (Lorentz) p r o f i l e  of the volume absorp- 

t i o n  coef f ic ien t  f o r  s ta t ionary atoms and add t o  t h i s  c o l l i s i o n a l  

(Stark) broadening due t o  t h e  e l e c t r i c  microfields,  and f i n a l l y  super- 

imposes t h e  thermal. (Doppler) broadening a t  each frequency due t o  the  

ve loc i ty  d i s t r ibu t ion  of the atoms. "hen, from Nicholls, 11 

29 where Sibulkin gives, 

and AvN, bvc, Av,, 

sional,  and thermal broadening respect ively.  This i n t e g r a l  m u s t  be 

solved numerically except at  the resonant frequency where it reduces to, 

are the spec t ra l  l i n e  widths due t o  natural ,  c o l l i -  



The natural, thermal, and c o l l i s i o n a l  widths can be expressed 

respectively as, 

(quadratic Stark e f f e c t )  Avc = Avc + % 
(resonance broadening) 

where the  Stark broadening i s  composed of two p a r t s  when resonance 

t r a n s i t i o n s  are involved. 

5 Consider t he  four first excited, o r  3p 4s, s t a t e s  of t h e  atom 

which have quantized j values 1, 0, 1, 2.  Since f o r  allowable t r a n -  

s i t i o n s  Aj = - + 0, 1, with 0 --f 0 t rans i t ions  excluded, only resonance 

t r a n s i t i o n s  from the  two j = 1 levels  can occur, each l e v e l  having a 

degeneracy, g( l), of 3. 

t he  o s c i l l a t o r  strengths corresponding t o  these t ransi t ions,  one of 

which i s  a s inglet  while t h e  other  i s  a t r i p l e t , t o  be, 

Knoxl2 using Hartree-Fock re la t ions  determined 

and 

0 0 

where the  wavelengths are respectively 1049 A and 1067 A .  

The co l l i s iona l  width f o r  these resonance t rans i t ions  i s  

11 given by Nicholls as, 
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. 30 = 10- 14 cm 4 sec -1 and, 31 u = (8kTe/me) 1/2 . 
cS e 

where, 

of the  order of 1 ev and an TA7 For an atom temperature, 

e lectron density, n of the  order of the  volume absorption 

c o e f f i c i e n t s a t  the  resonant frequency f o r  these s ing le t  and t r i p l e t  

t r ans i t i ons  respect ivelyare  calculated t o  be, 

e’ 

and 



APPENDIX C 

RELSlTION BEWEN TRE OSCILLATOR STRENGTH AND THE EINSTEIN A AND E 

COEFFICIENTS 

Following the  analysis  of Unsijld, 32 t he  absorption of energy 

per  u n i t  time and volume i n  the  so l id  angle 

dv i s ,  

dsz and frequency range 

k I  dvdsz v v  

Integrat ing over a l l  frequencies and, f o r  the  case of isentropic  in-  

tensi ty ,  over a l l  so l id  angles the  absorbed energy is ,  

4~r I / k dv 
V V 

However, i n  Appendix A it was shown tha t ,  

4111 = c P,(v) 
V 

so t h a t  t h e  energy absorbed per  u n i t  t i m e  and area  a t  a frequency 

corresponding t o  t r ans i t i ons  from a s t a t e  q t o  a s t a t e  p is ,  

If t h i s  absorbed energy produces stimulated t r ans i t i ons  of 

e lectrons between these two s t a t e s  it can be equated t o  the  energy 

increase of t h e  electrons,  



Theref ore, 

where f denotes the o s c i l l a t o r  s t rength corresponding t o  t ran-  

s i t i o n s  from s t a t e  q t o  p, enables the Einstein coef f ic ien t  t o  
9,P 

be expressed as, 

The Einstein and B coef f ic ien ts  can be r e l a t ed  as 

follows.u Consider a Hohlram where dn/dt = 0 f o r  any energy l e v e l  

at any t i m e ,  and where the  radiat ion i s  Planckian. 

t r ans i t i ons  between p and q due t o  spontaneous and stimulated 

emission and absorption 

Then, equating 

Relating n( q) t o  n(p)  by the Boltzmann expression, and r ea l i z ing  

t h a t  p ( v  ) P ~ ~ ( v ~ , ~ )  the  above equation reduces to, 
R 9rP 



Comparing t h i s  r e l a t ion  with the  Planckian form, 

r e s u l t s  i n  the two Einstein re la t ions ,  

g (p> B(P,d  = g(q)  &P) 

and 

Finally, combining the  expression between B(q,p) and f 

with these Einstein re la t ions  enables the  Einstein A coef f ic ien t  
q, P 

t o  be represented by, 

92 



APPENDIX D 

REUT'IOI4 BETWEE% THE EXCI'I!A!L'ION AND DE-EXCITATION RATE COEFFICIENTS 

The exc i ta t ion  and de-excitation cross-sections f o r  t rans i t ions  

between any two energy l eve l s  p and q of the atom depend only on 

the  co l l i s iona l  energy, and can be derived by the method of detai led 

balancing i n  the following manner. Assume states p and q are i n  

equilibrium with each other  and w i t h  t h e  free electrons, and that only 

co l l i s iona l  processes between electrons and atoms occur. 

number of t r ans i t i ons  from q t o  p due t o  such co l l i s ions  w i l l  

equal the number of t rans i t ions  from p t o  q, and can be expressed 

as, 

Then the  

I 

Here E and E are the  energies of t he  colliding free electrons, 

with t h e  atom i n  energy levels  p and q respectively, and u(q + p)  

represents t he  cross-section fo r  t r ans i t i ons  between leve ls  p and q. 

P 9 

Now, the  Boltzmann expression relates the  number densi t ies  

of atoms i n  states p and q as, 
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and the  Maxwellian d i s t r ibu t ion  of e lectrons i s  denoted by, 

where c ( T )  represents a temperature dependent function. In addition, 

t he  energy balance d i c t a t e s  t ha t ,  

where E(p) and E(q) represent t h e  electronic  energy of t he  atom 

i n  energy levels  p and q respect ively.  Elerefore, t h e  previous 

re la t ion  equating the’number of t r ans i t i ons  between s t a t e s  p and q 

reduces to ,  

This expression i s  s a t i s f i e d  i f ,  

s ince de = de . 
9 P 
Because the  resu l t ing  expression relates cross-sections 

which are atomic constants and therefore  independent of temperature, 

it i s  va l id  even when the  energy l eve l s  are not i n  thermal equilibrium. 

The r a t e  coef f ic ien t  i s  defined as, 
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Substitzting into t h i s  expressioa 8 Maxwellian distribution f o r  the 

e lec t rons  a t  temperature 

between the exc i ta t ion  and de-excitation cross-sections, results in ,  

and the previously derived r e l a t ion  *e> 

By using the previous energy balance and since dE = dc the above 

r e l a t ion  becomes, 
9 P 

Summing over a l l  of the  excited levels q > 0 transforms the 

above expression t o  the  following re la t ion ,  f o r  the  case where 

represents  t he  ground state, 0, of degeneracy 1, 

p 
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APPENDIX E 

RATE OF ELM;rTRON PRODUCTION BY ATOM-ATOM I O N I Z I N G  COLLISIONS 

By following an analysis  similar t o  t h a t  described i n  Chapman 

and Cowling17 the  r a t e  of e lectron production due t o  i n e l a s t i c  en- 

counters between atoms can be expressed as, 

where u ( v )  represents the ionizing cross-section f o r  co l l i s ions  

between atoms, v 

A-A 

i s  the  r e l a t i v e  ve loc i ty  between each pair of 

co l l id ing  a t o m s  and vi i s  i t s  value corresponding t o  

the first excited l e v e l  o f  the  atom. Since t h e  energy 

of atoms r e l a t ive  t o  t h e  axes moving with t h e i r  center  

t he  energy of 

of such a pair 

of m a s s  is,  

1 2  
4 A  E = - ~ v  

t h e  above expression can be wr i t ten  i n  terms of E as, 

Assuming t h a t  the region of i n t e r e s t  of t he  cross-section 

curve, i . e . ,  t h a t  portion near t he  ionizat ion threshold, can be 



approximated by the following polynomial of degree n, 

is the energy of t h e  first excited level of the atom, and "i where 

the c ' s  are constants, the electron production rate is, m 

A where s = E - E Interchanging the integration and summation signs, i' 

the integrated expression becomes, 

For a flowing gas the substantial derivative, for the electron 

production rate per unit mass of gas,  must be used. 

derivative the above expression becomes, 

In terms of this 

E 
x exp (- L) 

kTA 
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